Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T00:35:07.124Z Has data issue: false hasContentIssue false

Charney isotropy and equipartition in quasi-geostrophic turbulence

Published online by Cambridge University Press:  01 July 2010

ANDREAS VALLGREN*
Affiliation:
Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
ERIK LINDBORG
Affiliation:
Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
*
Email address for correspondence: [email protected]

Abstract

High-resolution simulations of forced quasi-geostrophic (QG) turbulence reveal that Charney isotropy develops under a wide range of conditions, and constitutes a preferred state also in β-plane and freely decaying turbulence. There is a clear analogy between two-dimensional and QG turbulence, with a direct enstrophy cascade that is governed by the prediction of Kraichnan (J. Fluid Mech., vol. 47, 1971, p. 525) and an inverse energy cascade following the classic k−5/3 scaling. Furthermore, we find that Charney's prediction of equipartition between the potential and kinetic energy in each of the two horizontal velocity components is approximately fulfilled in the inertial ranges.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvelius, K. 1999 Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11, 1880.CrossRefGoogle Scholar
Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 1087.2.0.CO;2>CrossRefGoogle Scholar
Danilov, S. & Gurarie, D. 2001 Forced two-dimensional turbulence in spectral and physical space. Phys. Rev. E 63, 061208.CrossRefGoogle ScholarPubMed
Dritschel, D. G., de la Torre Juarez, M. & Ambaum, H. P. 1999 The three-dimensional vortical nature of atmospheric and oceanic turbulent flows. Phys. Fluids 11, 1512.CrossRefGoogle Scholar
Gage, K. S. & Nastrom, G. D. 1986 Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J. Atmos. Sci. 43, 729.2.0.CO;2>CrossRefGoogle Scholar
von Hardenberg, J., McWilliams, J. C., Provenzale, A., Shchepetkin, A. & Weiss, J. B. 2000 Vortex merging in quasi-geostrophic flows. J. Fluid Mech. 412, 331.CrossRefGoogle Scholar
Herring, J. R. 1980 Statistical theory of quasi-geostrophic turbulence. J. Atmos. Sci. 37, 969.2.0.CO;2>CrossRefGoogle Scholar
Hua, B. L. & Haidvogel, D. B. 1986 Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci. 43, 2923.2.0.CO;2>CrossRefGoogle Scholar
Kraichnan, R. H. 1971 Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 47, 525.CrossRefGoogle Scholar
Lilly, D. K. 1989 Two-dimensional turbulence generated by energy sources at two scales. J. Atmos. Sci. 46, 2026.2.0.CO;2>CrossRefGoogle Scholar
Lindborg, E. 1999 Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 388, 259.CrossRefGoogle Scholar
McWilliams, J. 1989 Statistical properties of decaying geostrophic turbulence. J. Fluid Mech. 198, 199.CrossRefGoogle Scholar
McWilliams, J. 1990 The vortices of geostrophic turbulence. J. Fluid Mech. 219, 387.CrossRefGoogle Scholar
McWilliams, J., Weiss, J. B. & Yavneh, I. 1999 The vortices of homogeneous geostrophic turbulence. J. Fluid Mech. 401, 1.CrossRefGoogle Scholar
Nastrom, G. D. & Gage, K. S. 1985 A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42, 950.2.0.CO;2>CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn.Springer.CrossRefGoogle Scholar
Reinaud, J. N., Dritschel, D. G. & Koudella, C. R. 2003 The shape of vortices in quasi-geostrophic turbulence. J. Fluid Mech. 474, 175.CrossRefGoogle Scholar
Rhines, P. B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417.CrossRefGoogle Scholar
Smith, L. M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11, 1608.CrossRefGoogle Scholar
Tung, K. K. & Orlando, W. W. 2003 The k −3 and k −5/3 energy spectrum of atmospheric turbulence: quasigeostrophic two-level model simulation. J. Atmos. Sci. 60, 824.2.0.CO;2>CrossRefGoogle Scholar