Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T21:41:09.535Z Has data issue: false hasContentIssue false

Characterization of coherent vortical structures in a supersonic turbulent boundary layer

Published online by Cambridge University Press:  01 October 2008

SERGIO PIROZZOLI
Affiliation:
Dipartimento di Meccanica e Aeronautica, Università di Roma ‘La Sapienza’, Via Eudossiana 18, 00184 Roma, Italy
MATTEO BERNARDINI
Affiliation:
Dipartimento di Meccanica e Aeronautica, Università di Roma ‘La Sapienza’, Via Eudossiana 18, 00184 Roma, Italy
FRANCESCO GRASSO
Affiliation:
Dipartimento di Meccanica e Aeronautica, Università di Roma ‘La Sapienza’, Via Eudossiana 18, 00184 Roma, Italy

Abstract

A spatially developing supersonic boundary layer at Mach 2 is analysed by means of direct numerical simulation of the compressible Navier--Stokes equations, with the objective of quantitatively characterizing the coherent vortical structures. The study shows structural similarities with the incompressible case. In particular, the inner layer is mainly populated by quasi-streamwise vortices, while in the outer layer we observe a large variety of structures, including hairpin vortices and hairpin packets. The characteristic properties of the educed structures are found to be nearly uniform throughout the outer layer, and to be weakly affected by the local vortex orientation. In the outer layer, typical core radii vary in the range of 5–6 dissipative length scales, and the associated circulation is approximately constant, and of the order of 180 wall units. The statistical properties of the vortical structures in the outer layer are similar to those of an ensemble of non-interacting closed-loop vortices with a nearly planar head inclined at an angle of approximately 20° with respect to the wall, and with an overall size of approximately 30 dissipative length scales.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acarlar, M. S. & Smith, C. R. 1986 A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.CrossRefGoogle Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
del Álamo, J. C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15, L41L44.CrossRefGoogle Scholar
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.CrossRefGoogle Scholar
Blackwelder, R. F. & Eckelmann, H. 1979 Streamwise vortices associated with the bursting phenomenon. J. Fluid Mech. 94, 577594.CrossRefGoogle Scholar
Carlier, J. & Stanislas, M. 2005 Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143188.CrossRefGoogle Scholar
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.CrossRefGoogle Scholar
Chernyshenko, S. I. & Baig, M. F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544, 99131.CrossRefGoogle Scholar
Chong, M. S., Soria, J., Perry, E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 Turbulence structures of wall-bounded shear flows found using DNS data. J. Fluid Mech. 357, 225247.CrossRefGoogle Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765777.CrossRefGoogle Scholar
Delo, R. M., Kelso, C. J. & Smits, A. J. 2004 Three-dimensional structure of a low-Reynolds-number turbulent boundary layer. J. Fluid Mech. 512, 4783.CrossRefGoogle Scholar
Eléna, M. & Lacharme, J. 1988 Experimental study of a supersonic turbulent boundary layer using a laser Doppler anemometer. J. Méc. Théor. Appl. 7, 175190.Google Scholar
Falco, R. E. 1977 Coherent motions in the outer region of turbulent boundary layers. Phys. Fluids 20, S124S132.CrossRefGoogle Scholar
Farin, G. 1992 Curves and Surfaces for Computer Aided Geometric Design. Academic.Google Scholar
Ganapathisubramani, B., Longmire, E. K. & Marušić, I. 2006 Experimental investigation of vortex properties in a turbulent boundary layer. Phys. Fluids 18, 055105.CrossRefGoogle Scholar
Gatski, T. B. & Erlebacher, G. 2002 Numerical simulation of a spatially evolving supersonic turbulent boundary layer. NASA TM 211934.Google Scholar
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.CrossRefGoogle Scholar
Hambleton, W. T., Hutchins, N. & Marušić, I. 2006 Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer. J. Fluid Mech. 560, 5364.CrossRefGoogle Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulent structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Head, M. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.CrossRefGoogle Scholar
Hutchins, N., Hambleton, W. T. & Marušić, I. 2005 Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J. Fluid Mech. 541, 2154.CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 The production of turbulence near a smoth wall in a turbulent boundary layer. J. Fluid Mech. 50, 133160.CrossRefGoogle Scholar
Klewicki, J. C. 1997 Self-sustaining traits of near-wall motions underlying boundary layer stress transport. In Self-sustaining Mechanisms of Wall Turbulence (ed. Panton, R. L.), vol. 15, pp. 135166. Computational Mechanics.Google Scholar
Klewicki, J. C. & Falco, R. E. 1990 On accurately measuring statistics associated with small-scale structure in a turbulent boundary layers using hot-wire probes. J. Fluid Mech. 219, 119142.CrossRefGoogle Scholar
Kline, S. J. & Portela, L. M. 1997 A view of the structure of turbulent boundary layers. In Self-Sustaining Mechanisms of Wall Turbulence (ed. Panton, R. L.), vol. 15, pp. 167180. Computational Mechanics.Google Scholar
Kline, S. J., Reynolds, W. C., Schraub, W. C. & Runstadler, F. A. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.CrossRefGoogle Scholar
Li, Q. & Coleman, G. N. 2003 DNS of an oblique shock wave impinging upon a turbulent boundar layer. In Direct and Large-Eddy Simulation V (ERCOFTAC Series 9) (ed. Friedrich, R., Geurts, B. J. & Metais, O.), pp. 387396. Kluwer.Google Scholar
Maeder, T., Adams, N. A. & Kleiser, L. 2001 Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech. 429, 187216.CrossRefGoogle Scholar
Martin, M. P. 2004 DNS of hypersonic turbulent boundary layers. AIAA Paper 04-2337.CrossRefGoogle Scholar
Marušić, I. & Perry, A. E. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. J. Fluid Mech. 298, 389407.CrossRefGoogle Scholar
Morkovin, M. V. 1961 Effects of compressibility on turbulent flows. In Mécanique de la Turbulence, p. 367. A. Favre (CNRS, Paris).Google Scholar
Ong, L. & Wallace, J. M. 1998 Joint probability density analysis of the structure and dynamics of the vorticity field of a turbulent boundary layer. J. Fluid Mech. 367, 291328.CrossRefGoogle Scholar
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.CrossRefGoogle Scholar
Perry, A. E. & Marušić, I. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.CrossRefGoogle Scholar
Pirozzoli, S. & Grasso, F. 2004 Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys. Fluids 16 (12), 43864407.CrossRefGoogle Scholar
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at m = 2.25. Phys. Fluids 18, 065113.CrossRefGoogle Scholar
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16 (3), 530545.CrossRefGoogle Scholar
Ringuette, M. J., Wu, M. & Martin, M. P. 2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.CrossRefGoogle Scholar
Robinson, S. K. 1989 Space–time correlation measurements in a compressible turbulent boundary layer. AIAA Paper 86-1130.Google Scholar
Robinson, S. K. 1991 a Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Robinson, S. K. 1991 b The kinematics of turbulent boundary layer structure. NASA TM 103859.Google Scholar
Robinson, S. K., Kline, S. J. & Spalart, P. R. 1989 A review of quasi-coherent structures in a numerically simulated boundary layer. NASA TM 102191.Google Scholar
Sandham, N. D., Yao, Y. F. & Lawal, A. A. 2003 Large-eddy simulation of transonic flow over a bump. Intl J. Heat Fluid Flow 24, 584595.CrossRefGoogle Scholar
Smits, A. J. & Dussauge, J. P. 2006 Turbulent Shear Layers in Supersonic Flow. American Institute of Physics, New York.Google Scholar
Spalart, P. R. 1988 Direct numerical simulation of a turbulent boundary layer up to Re θ = 1410. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Spina, E. F. & Smits, A. J. 1987 Organized structures in a compressible turbulent boundary layer. J. Fluid Mech. 182, 85109.CrossRefGoogle Scholar
Spina, E. F., Donovan, J. F. & Smits, A. J. 1991 On the structure of high-Reynolds-number supersonic turbulent boundary layers. J. Fluid Mech. 222, 293327.CrossRefGoogle Scholar
Spina, E. F., Smits, A. J. & Robinson, S. K. 1994 The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech. 26, 287319.CrossRefGoogle Scholar
Theodorsen, T. 1952 Mechanism of turbulence. In Proc. Second Midwestern Conf. on Fluid Mechanics, March, Ohio State Univerisity, Columbus, Ohio, pp. 17–19.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
White, F. M. 1974 Viscous Fluid Flow. McGraw–Hill.Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar