Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T13:31:09.852Z Has data issue: false hasContentIssue false

Can barotropic tide–eddy interactions excite internal waves?

Published online by Cambridge University Press:  13 March 2013

M.-P. Lelong*
Affiliation:
NorthWest Research Associates, Seattle, WA 98009, USA
E. Kunze
Affiliation:
Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The interaction of barotropic tidal currents and baroclinic geostrophic eddies is considered theoretically and numerically to determine whether energy can be transferred to an internal wave field by this process. The eddy field evolves independently of the tide, suggesting that it acts catalytically in facilitating energy transfer from the barotropic tide to the internal wave field, without exchanging energy with the other flow components. The interaction is identically zero and no waves are generated when the barotropic tidal current is horizontally uniform. Optimal internal wave generation occurs when the scales of tide and eddy fields satisfy resonant conditions. The most efficient generation is found if the tidal current horizontal scale is comparable to that of the eddies, with a weak maximum when the scales differ by a factor of two. Thus, this process is not an effective mechanism for internal wave excitation in the deep ocean, where tidal current scales are much larger than those of eddies, but it may provide an additional source of internal waves in coastal areas where horizontal modulation of the tide by topography can be significant.

Type
Papers
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - SA
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.
Copyright
©2013 Cambridge University Press.

References

Althaus, A. M., Kunze, E. & Sanford, T. B. 2003 Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr. 33, 15101527.2.0.CO;2>CrossRefGoogle Scholar
Balmforth, N. J., Ierley, G. R. & Young, W. R. 2002 Tidal conversion by subcritical topography. J. Phys. Oceanogr. 32, 29002914.Google Scholar
Bell, T. H. 1975 Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320327.CrossRefGoogle Scholar
Cox, C. & Sandstrom, H. 1962 Coupling of internal and surface waves in water of variable depth. J. Oceanogr. Soc. Japan 18, 499513.Google Scholar
Danioux, E. & Klein, P. 2008 A resonance mechanism leading to wind-forced motions with a $2f$ frequency. J. Phys. Oceanogr. 38 (10), 23222329.Google Scholar
Egbert, G. D. & Ray, R. 2001 Estimates of ${M}_{2} $ tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res. 106, 22 47522 502.CrossRefGoogle Scholar
Ford, R., McIntyre, M. E. & Norton, W. A. 2000 Balance and the slow quasimanifold: some explicit results. J. Atmos. Sci. 57 (9), 12361254.Google Scholar
Garrett, C. J. R. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.Google Scholar
Gill, A. E. 1982 Atmosphere–Ocean Dynamics. Academic Press.Google Scholar
Holloway, P. E. & Merrifield, M. A. 1999 Internal tide generation by seamounts, ridges and islands. J. Geophys. Res. 104, 25 93725 951.Google Scholar
Kevorkian, J. & Cole, J. D. 1981 Perturbation Methods in Applied Mathematics. Springer.Google Scholar
Khatiwala, S. 2003 Generation of internal tides in an ocean of finite depth: analytical and numerical calculation. Deep-Sea Res. 50, 321.CrossRefGoogle Scholar
Kunze, E. 1985 Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15, 544565.Google Scholar
Lee, C. M., Kunze, E., Sanford, T. B., Nash, J. D., Merrifield, M. A. & Holloway, P. E. 2006 Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr. 36, 11651183.Google Scholar
Lelong, M.-P. & Riley, J. J. 1991 Internal wave–vortical mode interactions in strongly stratified flows. J. Fluid Mech. 232, 119.Google Scholar
Llewellyn Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32, 15541556.Google Scholar
Llewellyn Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech. 495, 175191.Google Scholar
MacCready, P. & Pawlak, G. 2001 Stratified flow along a rough slope: separation drag and wave drag. J. Phys. Oceanogr. 31, 28242839.2.0.CO;2>CrossRefGoogle Scholar
McComas, C. H. & Bretherton, F. P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 83, 13971412.Google Scholar
Merrifield, M. A. & Holloway, P. E. 2002 Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res. 107, 3179.Google Scholar
Morozov, E. G. 1995 Semidiurnal internal wave global field. Deep-Sea Res. 42, 135148.Google Scholar
Müller, P., Holloway, G., Henyey, F. & Pomphrey, N. 1986 Nonlinear interactions among internal gravity waves. Rev. Geophys. 24, 493536.Google Scholar
Nash, J. D., Kunze, E., Sanford, T. B. & Lee, C. M. 2006 Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J. Phys. Oceanogr. 36, 11231135.Google Scholar
Petrelis, F., Llewellyn Smith, S. G. & Young, W. R. 2006 Tidal conversion at a submarine ridge. J. Phys. Oceanogr. 36, 10531071.CrossRefGoogle Scholar
Pingree, R. D., Mardell, G. T. & New, A. L. 1986 Propagation of internal tides from the upper slopes of the Bay of Biscay. Nature 321, 154158.Google Scholar
Pingree, R. D. & New, A. L. 1989 Downward propagation of internal tide energy into the Bay of Biscay. Deep-Sea Res. 36, 735758.Google Scholar
Ray, R. D. & Mitchum, G. T. 1997 Surface manifestation of internal tides in the deep ocean: observations from altimetry and island gauges. Prog. Oceanogr. 40, 135162.Google Scholar
Reznik, G. M., Zeitlin, V. & Ben Jelloul, M. 2001 Nonlinear theory of geostrophic adjustment. Part 1. Rotating shallow-water model. J. Fluid Mech. 445, 93120.Google Scholar
Rogachev, K. A. & Carmack, E. C. 2002 Evidence for the trapping and amplification of near-inertial motions in a large anticyclonic ring in the Oyashio Current. J. Oceanogr. 58, 673682.Google Scholar
Rogachev, K. A., Carmack, E., Miyaki, M., Thompson, R. & Yurasov, G. I. 1992 Drifting buoy in an anticyclonic eddy of the Oyashio Current. Dokl. Ross. Akad. Nauk 326, 547550.Google Scholar
Rogachev, K. A., Salomatin, A. S., Yusupov, V. I. & Carmack, E. C. 1996 On the internal structure of the Kuril Current anticyclonic eddies. Okeanologiya 36, 247354.Google Scholar
Rudnick, D. L., Boyd, T., Brainard, R. E., Carter, G. S., Egbert, G. D., Gregg, M. C., Holloway, P. E., Klymak, J., Kunze, E., Lee, C. M., Levine, M. D., Luther, D. S., Martin, J., Merrifield, M. A., Nash, J. N., Pinkel, R., Rainville, L. & Sanford, T. B. 2003 From tides to mixing along the Hawaiian Ridge. Science 301, 355357.Google Scholar
Simmons, H., Hallberg, R. W. & Arbic, B. K. 2004 Internal wave generation in a global baroclinic tide model. Deep-Sea Res. 51, 30433068.Google Scholar
St Laurent, L. C. & Garrett, C. J. R. 2002 The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 32, 28822899.Google Scholar
St Laurent, L. C., Stringer, S., Garrett, C. J. R. & Perrault-Joncas, D. 2003 The generation of internal tides at abrupt topography. Deep-Sea Res. 50, 9871003.Google Scholar
Thorpe, S. A. 1992 The generation of internal waves by flow over the rough topography of a continental slope. Proc. R. Soc. Lond. A 439A, 115130.Google Scholar
Vlasenko, V., Stashchuk, N. & Hutter, K. 2005 Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press.Google Scholar
Waite, M. L. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.Google Scholar
Winters, K. B. & de la Fuente, A. 2012 Modelling rotating stratified flows at laboratory-scale using spectrally-based DNS. Ocean Model. 49, 4759.Google Scholar
Wunsch, C. 1975 Internal tides in the ocean. Rev. Geophys. Space Phys. 13, 167182.CrossRefGoogle Scholar
Zeitlin, V., Reznik, G. M. & Ben Jelloul, M. 2003 Nonlinear theory of geostrophic adjustment. Part 2. Two-layer and continuously stratified primitive equations. J. Fluid Mech. 491, 207228.Google Scholar