Article contents
Can barotropic tide–eddy interactions excite internal waves?
Published online by Cambridge University Press: 13 March 2013
Abstract
The interaction of barotropic tidal currents and baroclinic geostrophic eddies is considered theoretically and numerically to determine whether energy can be transferred to an internal wave field by this process. The eddy field evolves independently of the tide, suggesting that it acts catalytically in facilitating energy transfer from the barotropic tide to the internal wave field, without exchanging energy with the other flow components. The interaction is identically zero and no waves are generated when the barotropic tidal current is horizontally uniform. Optimal internal wave generation occurs when the scales of tide and eddy fields satisfy resonant conditions. The most efficient generation is found if the tidal current horizontal scale is comparable to that of the eddies, with a weak maximum when the scales differ by a factor of two. Thus, this process is not an effective mechanism for internal wave excitation in the deep ocean, where tidal current scales are much larger than those of eddies, but it may provide an additional source of internal waves in coastal areas where horizontal modulation of the tide by topography can be significant.
- Type
- Papers
- Information
- Creative Commons
- The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.
- Copyright
- ©2013 Cambridge University Press.
References
- 11
- Cited by