Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-05-06T22:43:13.424Z Has data issue: false hasContentIssue false

The Cahn–Hilliard–Navier–Stokes framework for multiphase fluid flows: laminar, turbulent and active

Published online by Cambridge University Press:  05 May 2025

Nadia Bihari Padhan
Affiliation:
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India Institute of Scientific Computing, TU Dresden, 01069 Dresden, Germany
Rahul Pandit*
Affiliation:
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
*
Corresponding author: Rahul Pandit, [email protected]

Abstract

The Cahn–Hilliard–Navier–Stokes (CHNS) partial differential equations (PDEs) provide a powerful framework for the study of the statistical mechanics and fluid dynamics of multiphase fluids. We provide an introduction to the equilibrium and non-equilibrium statistical mechanics of systems in which coexisting phases, distinguished from each other by scalar order parameters, are separated by an interface. We then introduce the coupled CHNS PDEs for two immiscible fluids and generalisations for (i) coexisting phases with different viscosities, (ii) CHNS with gravity, (iii) three-component fluids and (iv) the CHNS for active fluids. We discuss mathematical issues of the regularity of solutions of the CHNS PDEs. Finally we provide a survey of the rich variety of results that have been obtained by numerical studies of CHNS-type PDEs for diverse systems, including bubbles in turbulent flows, antibubbles, droplet and liquid-lens mergers, turbulence in the active-CHNS model and its generalisation that can lead to a self-propelled droplet.

Type
JFM Perspectives
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abels, H. 2009 a Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Commun. Math. Phys. 289 (1), 4573.CrossRefGoogle Scholar
Abels, H. 2009 b Longtime Behavior of Solutions of a Navier–Stokes/Cahn–Hiilliard system. Banach Centre Publications.Google Scholar
Abels, H., Garcke, H. & Giorgini, A. 2024 Global regularity and asymptotic stabilization for the incompressible Navier–Stokes–Cahn–Hilliard model with unmatched densities. Math. Ann. 389 (2), 12671321.CrossRefGoogle Scholar
Alert, R., Casademunt, J. & Joanny, J.-F. 2022 Active turbulence. Annu. Rev. Condens. Matter Phys. 13 (1), 143170.CrossRefGoogle Scholar
Amit, D.J. & Martin-Mayor, V. 2005 Field Theory, the Renormalization Group, and Critical Phenomena: Graphs to Computers. World Scientific Publishing Company.CrossRefGoogle Scholar
Anderson, D.M., McFadden, G.B. & Wheeler, A.A. 1998 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30 (1), 139165.CrossRefGoogle Scholar
Angot, P., Bruneau, C.-H. & Fabrie, P. 1999 A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81 (4), 497520.CrossRefGoogle Scholar
Anna, S.L. 2016 Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48 (1), 285309.CrossRefGoogle Scholar
Aref, H. & Siggia, E.D. 1981 Evolution and breakdown of a vortex street in two dimensions. J. Fluid Mech. 109, 435463.CrossRefGoogle Scholar
Atherton, T.J. & Kerbyson, D.J. 1999 Size invariant circle detection. Image Vis. Comput. 17 (11), 795803.CrossRefGoogle Scholar
Backofen, R., Altawil, A.Y., Salvalaglio, M. & Voigt, A. 2024 Nonequilibrium hyperuniform states in active turbulence. Proc. Natl Acad. Sci. USA 121 (24), e2320719121.CrossRefGoogle ScholarPubMed
Badalassi, V.E., Ceniceros, H.D. & Banerjee, S. 2003 Computation of multiphase systems with phase field models. J. Comput. Phys. 190 (2), 371397.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.CrossRefGoogle Scholar
Banani, S.F., Lee, H.O., Hyman, A.A. & Rosen, M.K. 2017 Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18 (5), 285298.CrossRefGoogle ScholarPubMed
Bandak, D., Goldenfeld, N., Mailybaev, A.A. & Eyink, G. 2022 Dissipation-range fluid turbulence and thermal noise. Phys. Rev. E 105 (6), 065113.CrossRefGoogle ScholarPubMed
Bardos, C. & Titi, E. 2007 Euler equations for incompressible ideal fluids. Russian Math. Surv. 62 (3), 409451.CrossRefGoogle Scholar
Barrett, J.W., Blowey, J.F. & Garcke, H. 1999 Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1), 286318.CrossRefGoogle Scholar
Barrett, J.W., Blowey, J.F. & Garcke, H. 2001 On fully practical finite element approximations of degenerate Cahn–Hilliard systems. ESAIM: Math. Model. Numer. Anal. 35 (4), 713748.CrossRefGoogle Scholar
Basu, A., Sain, A., Dhar, S.K. & Pandit, R. 1998 Multiscaling in models of magnetohydrodynamic turbulence. Phys. Rev. Lett. 81 (13), 26872690.CrossRefGoogle Scholar
Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Baxter, R.J. 2016 Exactly Solved Models in Statistical Mechanics. Elsevier.Google Scholar
Beale, J., Kato, T. & Majda, A. 1984 Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94 (1), 6166.CrossRefGoogle Scholar
Benzi, R. & Ching, E.S. 2018 Polymers in fluid flows. Annu. Rev. Condens. Matter Phys. 9 (1), 163181.CrossRefGoogle Scholar
Benzi, R. & Succi, S. 1990 Two-dimensional turbulence with the lattice Boltzmann equation. J. Phys. A: Math. Gen. 23 (1), L1L5.CrossRefGoogle Scholar
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222 (3), 145197.CrossRefGoogle Scholar
Berti, S., Bistagnino, A., Boffetta, G., Celani, A. & Musacchio, S. 2008 Two-dimensional elastic turbulence. Phys. Rev. E 77 (5), 055306.CrossRefGoogle ScholarPubMed
Berti, S., Boffetta, G., Cencini, M. & Vulpiani, A. 2005 Turbulence and coarsening in active and passive binary mixtures. Phys. Rev. Lett. 95 (22), 224501.CrossRefGoogle ScholarPubMed
Betchov, R. 1977 Transition. In Handbook of Turbulence, vol. 1 Fundamentals and Applications, pp. 147164. Springer.CrossRefGoogle Scholar
Bhattacharjee, J. & Kirkpatrick, T. 2022 Activity induced turbulence in driven active matter. Phys. Rev. Fluids 7 (3), 034602.CrossRefGoogle Scholar
Binder, K., Kalos, M., Lebowitz, J. & Marro, J. 1979 Computer experiments on phase separation in binary alloys. Adv. Colloid Interface 10 (1), 173214.CrossRefGoogle Scholar
Bistafa, S.R. 2018 On the development of the Navier–Stokes equation by Navier. Rev. Bras. Ensino Fís. 40 (2), e2603.Google Scholar
Bodenschatz, E., Malinowski, S.P., Shaw, R.A. & Stratmann, F. 2010 Can we understand clouds without turbulence? Science 327 (5968), 970971.CrossRefGoogle ScholarPubMed
Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44 (1), 427451.CrossRefGoogle Scholar
Boffetta, G., Mazzino, A., Musacchio, S. & Vozella, L. 2010 a Rayleigh–Taylor instability in a viscoelastic binary fluid. J. Fluid Mech. 643, 127136.CrossRefGoogle Scholar
Boffetta, G., Mazzino, A., Musacchio, S. & Vozella, L. 2010 b Statistics of mixing in three-dimensional Rayleigh–Taylor turbulence at low Atwood number and Prandtl number one. Phys. Fluids 22 (3).CrossRefGoogle Scholar
Bonhomme, R., Magnaudet, J., Duval, F. & Piar, B. 2012 Inertial dynamics of air bubbles crossing a horizontal fluid–fluid interface. J. Fluid Mech. 707, 405443.CrossRefGoogle Scholar
Borcia, R., Borcia, I.D., Bestehorn, M., Sharma, D. & Amiroudine, S. 2022 Phase field modeling in liquid binary mixtures: isothermal and nonisothermal problems. Phys. Rev. Fluids 7 (6), 064005.CrossRefGoogle Scholar
Bourouiba, L. 2021 The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 53 (1), 473508.CrossRefGoogle Scholar
Boyer, F. & Lapuerta, C. 2006 Study of a three component Cahn–Hilliard flow model. ESAIM: Math. Model. Numer. Anal. 40 (4), 653687.CrossRefGoogle Scholar
Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B. & Quintard, M. 2010 Cahn–Hilliard/Navier–Stokes model for the simulation of three-phase flows. Transp. Porous Med. 82 (3), 463483.CrossRefGoogle Scholar
Bratanov, V., Jenko, F. & Frey, E. 2015 New class of turbulence in active fluids. Proc. Natl Acad. Sci. USA 112 (49), 1504815053.CrossRefGoogle ScholarPubMed
Brauns, F. & Marchetti, M. 2024 Nonreciprocal pattern formation of conserved fields. Phys. Rev. X 14 (2), 021014.Google Scholar
Bray, A.J. 2002 Theory of phase-ordering kinetics. Adv. Phys. 51 (2), 481587.Google Scholar
Brennen, C.E. 2005 Fundamentals of Multiphase Flow. Cambridge University Press.CrossRefGoogle Scholar
Buaria, D. & Sreenivasan, K.R. 2022 Intermittency of turbulent velocity and scalar fields using three-dimensional local averaging. Phys. Rev. Fluids 7 (7), L072601.CrossRefGoogle Scholar
Buaria, D. & Sreenivasan, K.R. 2023 Forecasting small scale dynamics of fluid turbulence using deep neural networks. Proc. Natl Acad. Sci. USA 120 (30).CrossRefGoogle ScholarPubMed
Budiana, E.P., Pranowo, , Indarto, & Deendarlianto, 2020 The meshless numerical simulation of Kelvin–Helmholtz instability during the wave growth of liquid–liquid slug flow. Comput. Math. Applics. 80 (7), 18101838.CrossRefGoogle Scholar
Caginalp, G. & Fisher, M.E. 1979 Wall and boundary free energies: II. General domains and complete boundaries. Commun. Math. Phys. 65 (3), 247280.CrossRefGoogle Scholar
Cahn, J.W. 1961 On spinodal decomposition. Acta Metall. 9 (9), 795801.CrossRefGoogle Scholar
Cahn, J.W. 1977 Critical point wetting. J. Chem. Phys. 66 (8), 36673672.CrossRefGoogle Scholar
Cahn, J.W. & Hilliard, J.E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (2), 258267.CrossRefGoogle Scholar
Cahn, J.W. & Hilliard, J.E. 1959 Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31 (3), 688699.CrossRefGoogle Scholar
Canuto, C., Hussaini, M & Quarteroni, A. 1988 Spectral  Methods in Fluid Dynamics, p. 275. Springer-Verlag.CrossRefGoogle Scholar
Cates, M. & Nardini, C. 2024 Active phase separation: new phenomenology from non-equilibrium physics. arXiv preprint arXiv: 2412.02854.CrossRefGoogle Scholar
Cates, M.E. & Tailleur, J. 2015 Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6 (1), 219244.CrossRefGoogle Scholar
Celani, A., Mazzino, A., Muratore-Ginanneschi, P. & Vozella, L. 2009 Phase-field model for the Rayleigh–Taylor instability of immiscible fluids. J. Fluid Mech. 622, 115134.CrossRefGoogle Scholar
Celani, A., Musacchio, S. & Vincenzi, D. 2010 Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 104 (18), 184506.CrossRefGoogle ScholarPubMed
Chaikin, P.M., Lubensky, T.C. & Witten, T.A. 1995 Principles of Condensed Matter Physics, vol. 10. Cambridge University Press.CrossRefGoogle Scholar
Charru, F. 2011 Hydrodynamic Instabilities, vol. 37. Cambridge University Press.CrossRefGoogle Scholar
Chen, S. & Doolen, G.D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.CrossRefGoogle Scholar
Choi, K. & Park, H. 2021 Interfacial phenomena of the interaction between a liquid–liquid interface and rising bubble. Exp. Fluids 62 (6), 126.CrossRefGoogle Scholar
Chowdhury, I.U., Mahapatra, P.S. & Sen, A.K. 2022 A wettability pattern-mediated trapped bubble removal from a horizontal liquid–liquid interface. Phys. Fluids 34 (4), 042109.CrossRefGoogle Scholar
Colagrossi, A. & Landrini, M. 2003 Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191 (2), 448475.CrossRefGoogle Scholar
Constantin, P. & Foiaş, C. 1988 Navier–Stokes Equations. University of Chicago Press.CrossRefGoogle Scholar
Cooley, J.W. & Tukey, J.W. 1965 An algorithm for the machine calculation of complex Fourier series. Maths Comput. 19 (90), 297301.CrossRefGoogle Scholar
Cox, S.M. & Matthews, P.C. 2002 Exponential time differencing for stiff systems. J. Comput. Phys. 176 (2), 430455.CrossRefGoogle Scholar
Cushman-Roisin, B. 2005 Kelvin–Helmholtz instability as a boundary-value problem. Environ. Fluid Mech. 5 (6), 507525.CrossRefGoogle Scholar
Darrigol, O. 2005 Worlds of Flow: A History of Hydrodynamics From the Bernoullis to Prandtl. Oxford University Press.CrossRefGoogle Scholar
Darrigol, O. & Frisch, U. 2008 From Newton’s mechanics to Euler’s equations. Phys. D: Nonlinear Phenom. 237 (14-17), 18551869.CrossRefGoogle Scholar
Das, A., Bhattacharjee, J. & Kirkpatrick, T. 2020 Transition to turbulence in driven active matter. Phys. Rev. E 101 (2), 023103.CrossRefGoogle ScholarPubMed
Delamere, P.A., Barnes, N.P., Ma, X. & Johnson, J.R. 2021 The Kelvin–Helmholtz instability from the perspective of hybrid simulations. Front. Astron. Space Sci. 8, 801824.CrossRefGoogle Scholar
Devenish, B. et al. 2012 Droplet growth in warm turbulent clouds. Q. J. R. Meteorol. Soc. 138 (667), 14011429.CrossRefGoogle Scholar
Díaz-Damacillo, L., Sigalotti, L.D.G., Alvarado-Rodríguez, C.E. & Klapp, J. 2023 Smoothed particle hydrodynamics simulations of the evaporation of suspended liquid droplets. Phys. Fluids 35 (12), 122111.CrossRefGoogle Scholar
Dietrich, N., Poncin, S., Pheulpin, S. & Li, H.Z. 2008 Passage of a bubble through a liquid–liquid interface. AIChE J. 54 (3), 594600.CrossRefGoogle Scholar
Dlotko, T. 1994 Global attractor for the Cahn–Hilliard equation in h2 and h3. J. Differ. Equ. 113 (2), 381393.CrossRefGoogle Scholar
Dlotko, T. 2022 Navier–Stokes–Cahn–Hilliard system of equations. J. Math. Phys. 63 (11), 111511.CrossRefGoogle Scholar
Doering, C.R. 2009 The 3D Navier–Stokes problem. Annu. Rev. Fluid Mech. 41 (1), 109128.CrossRefGoogle Scholar
Doering, C.R. & Gibbon, J.D. 1995 Applied Analysis of the Navier–Stokes Equations. Cambridge University Press.CrossRefGoogle Scholar
Donzis, D.A., Gibbon, J.D., Gupta, A., Kerr, R.M., Pandit, R. & Vincenzi, D. 2013 Vorticity moments in four numerical simulations of the 3D Navier–Stokes equations. J. Fluid Mech. 732, 316331.CrossRefGoogle Scholar
Dorbolo, S., Vandewalle, N., Reyssat, E. & Quéré, D. 2006 Vita brevis of antibubbles. Europhys. News 37 (4), 2425.CrossRefGoogle Scholar
Drazin, P.G. 2002 Introduction to Hydrodynamic Stability, vol. 32. Cambridge University Press.CrossRefGoogle Scholar
Dritschel, D.G. & Tobias, S.M. 2012 Two-dimensional magnetohydrodynamic turbulence in the small magnetic Prandtl number limit. J. Fluid Mech. 703, 8598.CrossRefGoogle Scholar
Drivas, T.D. & Elgindi, T.M. 2023 Singularity formation in the incompressible Euler equation in finite and infinite time. EMS Surv. Math. Sci. 10 (1), 1100.CrossRefGoogle Scholar
Dunkel, J., Heidenreich, S., Bär, M. & Goldstein, R.E. 2013 Minimal continuum theories of structure formation in dense active fluids. New J. Phys. 15 (4), 045016.CrossRefGoogle Scholar
Ebenbeck, M., Garcke, H. & Nürnberg, R. 2020 Cahn–Hilliard–Brinkman systems for tumour growth. arXiv preprint arXiv: 2003.08314.CrossRefGoogle Scholar
Elliott, C.M. & French, D.A. 1987 Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J. Appl. Maths 38 (2), 97128.CrossRefGoogle Scholar
Elliott, C.M. & Mikelić, A. 1991 Existence for the Cahn–Hilliard phase separation model with a nondifferentiable energy. Ann. Mat. Pura Appl. 158 (1), 181203.CrossRefGoogle Scholar
Elliott, C.M. & Songmu, Z. 1986 On the Cahn–Hilliard equation. Archive Ration. Mech. Anal. 96 (4), 339357.CrossRefGoogle Scholar
Emery, T.S. & Kandlikar, S.G. 2019 Modeling bubble collisions at liquid-liquid and compound interfaces. Langmuir 35 (25), 82948307.Google ScholarPubMed
Emery, T.S., Raghupathi, P.A. & Kandlikar, S.G. 2018 Flow regimes and transition criteria during passage of bubbles through a liquid–liquid interface. Langmuir 34 (23), 67666776.CrossRefGoogle ScholarPubMed
Engels, T., Kolomenskiy, D., Schneider, K. & Sesterhenn, J. 2016 Flusi: a novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization. SIAM J. Sci. Comput. 38 (5), S3S24.CrossRefGoogle Scholar
Engels, T., Truong, H., Farge, M., Kolomenskiy, D. & Schneider, K. 2022 Computational aerodynamics of insect flight using volume penalization. C. R. Méc. 350 (S1), 120.Google Scholar
Euler, L. 1761, Principia motus fluidorum. Novi Commentarii Academiae Scientiarum Petropolitanae, 271311.Google Scholar
Falk, H. 1970 Inequalities of J. W. Gibbs. Am. J. Phys. 38 (7), 858869.CrossRefGoogle Scholar
Fan, X., Diamond, P. & Chacón, L. 2017 Formation and evolution of target patterns in Cahn–Hilliard flows. Phys. Rev. E 96 (4), 041101.CrossRefGoogle ScholarPubMed
Fan, X., Diamond, P. & Chacón, L. 2018 CHNS: a case study of turbulence in elastic media. Phys. Plasmas 25 (5), 055702.CrossRefGoogle Scholar
Fan, X., Diamond, P., Chacón, L. & Li, H. 2016 Cascades and spectra of a turbulent spinodal decomposition in two-dimensional symmetric binary liquid mixtures. Phys. Rev. Fluids 1 (5), 054403.CrossRefGoogle Scholar
Farwig, R. 2021 From Jean Leray to the millennium problem: the Navier–Stokes equations. J. Evol. Equ. 21 (3), 32433263.CrossRefGoogle Scholar
Faucher-Giguere, C.-A. & Oh, S. 2023 Key physical processes in the circumgalactic medium. Annu. Rev. Astron. Astrophys. 61 (1), 131195.CrossRefGoogle Scholar
Feng, J., Muradoglu, M., Kim, H., Ault, J. T. & Stone, H.A. 2016 Dynamics of a bubble bouncing at a liquid/liquid/gas interface. J. Fluid Mech. 807, 324352.CrossRefGoogle Scholar
Fisher, M.E., Barber, M.N. & Jasnow, D. 1973 Helicity modulus, superfluidity, and scaling in isotropic systems. Phys. Rev. A 8 (2), 11111124.CrossRefGoogle Scholar
Fisher, M.E. & Caginalp, G. 1977 Wall and boundary free energies: I. Ferromagnetic scalar spin systems. Commun. Math. Phys. 56 (1), 1156.CrossRefGoogle Scholar
Fisher, M.P. & Wortis, M. 1984 Curvature corrections to the surface tension of fluid drops: Landau theory and a scaling hypothesis. Phys. Rev. B 29 (11), 62526260.CrossRefGoogle Scholar
Fixman, M. 1967 Transport coefficients in the gas critical region. J. Chem. Phys. 47 (8), 28082818.CrossRefGoogle Scholar
Fogedby, H.C. & Mouritsen, O.G. 1988 Lifshitz–Allen–Cahn domain-growth kinetics of Ising models with conserved density. Phys. Rev. B 37 (10), 59625965.CrossRefGoogle ScholarPubMed
Foias, C., Manley, O., Rosa, R. & Temam, R. 2001 Navier–Stokes Equations and Turbulence, vol. 83. Cambridge University Press.CrossRefGoogle Scholar
Forbes, L.K., Turner, R.J. & Walters, S.J. 2022 An extended Boussinesq theory for interfacial fluid mechanics. J. Engng Maths 133 (1), 10.CrossRefGoogle Scholar
Frigo, M. & Johnson, S.G. 1998 FFTW: An adaptive software architecture for the FFT. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), vol. 3, pp. 13811384. IEEE.CrossRefGoogle Scholar
Frohoff-Hülsmann, T. & Thiele, U. 2023 Nonreciprocal Cahn–Hilliard model emerges as a universal amplitude equation. Phys. Rev. Lett. 131 (10), 107201.CrossRefGoogle ScholarPubMed
Furihata, D. 2001 A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87 (4), 675699.CrossRefGoogle Scholar
Furukawa, H. 2000 Spinodal decomposition of two-dimensional fluid mixtures: a spectral analysis of droplet growth. Phys. Rev. E 61 (2), 14231431.CrossRefGoogle ScholarPubMed
Gal, C.G. & Grasselli, M. 2010 Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D. Annales De l’IHP Analyse Non Linéaire 27, 401436.Google Scholar
Galdi, G.P. 2000 An introduction to the Navier–Stokes initial-boundary value problem. In Fundamental Directions in Mathematical Fluid Mechanics, pp. 170. Springer.CrossRefGoogle Scholar
Gao, T. & Li, Z. 2017 Self-driven droplet powered by active nematics. Phys. Rev. Lett. 119 (10), 108002.CrossRefGoogle ScholarPubMed
Garcke, H., Lam, K.F. & Signori, A. 2021 On a phase field model of Cahn–Hilliard type for tumour growth with mechanical effects. Nonlinear Anal: Real World Applics. 57, 103192.CrossRefGoogle Scholar
Garoosi, F. & Mahdi, T.-F. 2022 Numerical simulation of three-fluid Rayleigh–Taylor instability using an enhanced Volume-Of-Fluid (VOF) model: new benchmark solutions. Comput. Fluids 245, 105591.CrossRefGoogle Scholar
Gibbon, J.D. 2008 The three-dimensional Euler equations: where do we stand? Phys. D: Nonlinear Phenom. 237 (14-17), 18941904.CrossRefGoogle Scholar
Gibbon, J.D., Donzis, D.A., Gupta, A., Kerr, R.M., Pandit, R. & Vincenzi, D. 2014 Regimes of nonlinear depletion and regularity in the 3D Navier–Stokes equations. Nonlinearity 27 (10), 26052625.CrossRefGoogle Scholar
Gibbon, J.D., Gupta, A., Krstulovic, G., Pandit, R., Politano, H., Ponty, Y., Pouquet, A., Sahoo, G. & Stawarz, J. 2016 a Depletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations. Phys. Rev. E 93 (4), 043104.CrossRefGoogle ScholarPubMed
Gibbon, J.D., Gupta, A., Pal, N. & Pandit, R. 2018 The role of BKM-type theorems in 3D Euler, Navier–Stokes and Cahn–Hilliard–Navier–Stokes analysis. Physica D: Nonlinear Phenom. 376, 6068.CrossRefGoogle Scholar
Gibbon, J.D., Kiran, K.V., Padhan, N.B. & Pandit, R. 2023 An analytical and computational study of the incompressible Toner–Tu equations. Phys. D: Nonlinear Phenom. 444, 133594.CrossRefGoogle Scholar
Gibbon, J.D., Pal, N., Gupta, A. & Pandit, R. 2016 b Regularity criterion for solutions of the three-dimensional Cahn–Hilliard–Navier–Stokes equations and associated computations. Phys. Rev. E 94 (6), 063103.CrossRefGoogle ScholarPubMed
Giorgini, A. 2021 Well-posedness of the two-dimensional Abels–Garcke–Grün model for two-phase flows with unmatched densities. Calc. Varation Partial Differ Equ. 60 (3), 100.CrossRefGoogle Scholar
Giorgini, A., Miranville, A. & Temam, R. 2019 Uniqueness and regularity for the Navier–Stokes–Cahn–Hilliard system. SIAM J. Math. Anal. 51 (3), 25352574.CrossRefGoogle Scholar
Giorgini, A. & Temam, R. 2020 Weak and strong solutions to the nonhomogeneous incompressible Navier–Stokes–Cahn–Hilliard system. J. Math. Pures Appl. 144, 194249.CrossRefGoogle Scholar
Girardeau, M. & Mazo, R. 1973 Variational methods in statistical mechanics. Adv. Chem. Phys. 140, 187255.Google Scholar
Glauber, R.J. 1963 Time-dependent statistics of the Ising model. J. Math. Phys. 4 (2), 294307.CrossRefGoogle Scholar
Goldenfeld, N. 2018 Lectures On Phase Transitions and the Renormalization Group. CRC Press.CrossRefGoogle Scholar
Gómez, D.O., Mininni, P.D. & Dmitruk, P. 2005 Parallel simulations in turbulent MHD. Phys. Scr. 2005 (T116), 123127.CrossRefGoogle Scholar
Gonzalez-Gutiérrez, L.M. & de Andrea González, A. 2019 Numerical computation of the Rayleigh–Taylor instability for a viscous fluid with regularized interface properties. Phys. Rev. E 100 (1), 013101.CrossRefGoogle ScholarPubMed
Gould, H., Tobochnik, J., Meredith, D.C., Koonin, S.E., McKay, S.R. & Christian, W. 1996 An introduction to computer simulation methods: applications to physical systems. Comput. Phys. 10 (4), 349349.CrossRefGoogle Scholar
Gouveia, B., Kim, Y., Shaevitz, J.W., Petry, S., Stone, H.A. & Brangwynne, C.P. 2022 Capillary forces generated by biomolecular condensates. Nature 609 (7926), 255264.CrossRefGoogle ScholarPubMed
Gregg, M.C., D’Asaro, E.A., Riley, J.J. & Kunze, E. 2018 Mixing efficiency in the ocean. Annu. Rev. Mar. Sci. 10 (1), 443473.CrossRefGoogle ScholarPubMed
Griffiths, R.B. 1972 Rigorous results and theorems. Phase Transitions Crit. Phenom. 1, 7109.Google Scholar
Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405 (6782), 5355.CrossRefGoogle Scholar
Gunton, J., San Miguel, M. & Sahni, P. 1983 The dynamics of first order phase transitions. In Phase Transitions and Critical Phenomena (eds. Domb, C & Lebowitz, J.L.), vol. 8. Academic Press.Google Scholar
Guo, Z., Yu, F., Lin, P., Wise, S. & Lowengrub, J. 2021 A diffuse domain method for two-phase flows with large density ratio in complex geometries. J. Fluid Mech. 907, A38.CrossRefGoogle Scholar
Gupta, A. & Pandit, R. 2017 Melting of a nonequilibrium vortex crystal in a fluid film with polymers: elastic versus fluid turbulence. Phys. Rev. E 95 (3), 033119.CrossRefGoogle Scholar
Gupta, A., Perlekar, P. & Pandit, R. 2015 Two-dimensional homogeneous isotropic fluid turbulence with polymer additives. Phys. Rev. E 91 (3), 033013.CrossRefGoogle ScholarPubMed
Gurtin, M.E., Polignone, D. & Vinals, J. 1996 Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Meth. Appl. Sci. 6 (06), 815831.CrossRefGoogle Scholar
Heinen, M., Hoffmann, M., Diewald, F., Seckler, S., Langenbach, K. & Vrabec, J. 2022 Droplet coalescence by molecular dynamics and phase-field modeling. Phys. Fluids 34 (4), 042006.CrossRefGoogle Scholar
Hertel, T., Besse, N. & Frisch, U. 2022 The Cauchy–Lagrange method for 3D-axisymmetric wall-bounded and potentially singular incompressible Euler flows. J. Comput. Phys. 449, 110758.CrossRefGoogle Scholar
Hester, E.W., Carney, S., Shah, V., Arnheim, A., Patel, B., Di Carlo, D. & Bertozzi, A.L. 2023 Fluid dynamics alters liquid–liquid phase separation in confined aqueous two-phase systems. Proc. Natl Acad. Sci. USA 120 (49), e2306467120.CrossRefGoogle ScholarPubMed
Hester, E.W., Vasil, G.M. & Burns, K.J. 2021 Improving accuracy of volume penalised fluid-solid interactions. J. Comput. Phys. 430, 110043.CrossRefGoogle Scholar
Hilhorst, D., Kampmann, J., Nguyen, T.N., Van Der, Z. & George, K. 2015 Formal asymptotic limit of a diffuse-interface tumor-growth model. Math. Models Meth. Appl. Sci. 25 (06), 10111043.CrossRefGoogle Scholar
Hill, J.D. & Millett, P.C. 2017 Numerical simulations of directed self-assembly in diblock copolymer films using zone annealing and pattern templating. Sci. Rep. 7 (1), 5250.CrossRefGoogle ScholarPubMed
Hohenberg, P.C. & Halperin, B.I. 1977 Theory of dynamic critical phenomena. Rev. Mod. Phys. 49 (3), 435479.CrossRefGoogle Scholar
Hoshoudy, G. & Cavus, H. 2018 Kelvin–Helmholtz instability of two finite-thickness fluid layers with continuous density and velocity profiles. J. Astrophys. Astron. 39 (3), 110.CrossRefGoogle Scholar
Hou, T., Wei, X., Iqbal, A., Yang, X., Wang, J., Ren, Y. & Yan, S. 2024 Advances in biomedical fluid–structure interaction: methodologies and applications from an interfacing perspective. Phys. Fluids 36 (2), 021301.CrossRefGoogle Scholar
Hou, T.Y. & Li, R. 2007 Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226 (1), 379397.CrossRefGoogle Scholar
Huang, C., de La Cruz, M. & Swift, B. 1995 Phase separation of ternary mixtures: symmetric polymer blends. Macromolecules 28 (24), 79968005.CrossRefGoogle Scholar
Huang, K. 2008 Statistical Mechanics. John Wiley & Sons.Google Scholar
Huang, Q. & Yang, J. 2022 Linear and energy-stable method with enhanced consistency for the incompressible Cahn–Hilliard–Navier–Stokes two-phase flow model. Mathematics 10 (24), 4711.CrossRefGoogle Scholar
Huat, T.C. 2015 Fluid-Structure Interaction of Multiphase Flow Within a Pipe Bend. IRC.Google Scholar
Hughes, W. & Hughes, A.R. 1932 Liquid drops on the same liquid surface. Nature 129 (3245), 59.CrossRefGoogle Scholar
Jain, P., Rana, N., Ramaswamy, S. & Perlekar, P. 2024 Inertia drives concentration-wave turbulence in swimmer suspensions. Phys. Rev. Lett. 133 (15), 158302.CrossRefGoogle ScholarPubMed
Jeske, S.R., Westhofen, L., Löschner, F., Fernández-Fernández, J.A. & Bender, J. 2023 Implicit surface tension for sph fluid simulation. ACM Trans. Graph. 43 (1), 114.CrossRefGoogle Scholar
Jia, B.-Q., Xie, L., Deng, X.-D., He, B.-S., Yang, L.-J. & Fu, Q.-F. 2023 Experimental study on the oscillatory Kelvin–Helmholtz instability of a planar liquid sheet in the presence of axial oscillating gas flow. J. Fluid Mech. 959, A18.CrossRefGoogle Scholar
Johansen, K., Kotopoulis, S., Poortinga, A.T. & Postema, M. 2015 a Nonlinear echoes from encapsulated antibubbles. Phys. Procedia 70, 10791082.CrossRefGoogle Scholar
Johansen, K., Kotopoulis, S. & Postema, M., 2015 b Ultrasonically driven antibubbles encapsulated by Newtonian fluids for active leakage detection. Lecture Notes Engng. Comput. Sci. 2216, 750754.Google Scholar
Johnson, R.E. & Sadhal, S. 1985 Fluid mechanics of compound multiphase drops and bubbles. Annu. Rev. Fluid Mech. 17 (1), 289320.CrossRefGoogle Scholar
Kadanoff, L.P., Götze, W., Hamblen, D., Hecht, R., Lewis, E., Palciauskas, V., Rayl, M., Swift, J., Aspnes, D. & Kane, J. 1967 Static phenomena near critical points: theory and experiment. Rev. Mod. Phys. 39 (2), 395431.CrossRefGoogle Scholar
Kadau, K., Germann, T.C., Hadjiconstantinou, N.G., Lomdahl, P.S., Dimonte, G., Holian, B.L. & Alder, B.J. 2004 Nanohydrodynamics simulations: an atomistic view of the Rayleigh–Taylor instability. Proc. Natl. Acad. Sci. 101 (16), 58515855.CrossRefGoogle ScholarPubMed
Kadoch, B., Kolomenskiy, D., Angot, P. & Schneider, K. 2012 A volume penalization method for incompressible flows and scalar advection–diffusion with moving obstacles. J. Comput. Phys. 231 (12), 43654383.CrossRefGoogle Scholar
Kalelkar, C. 2017 The inveterate tinkerer: 7. Antibubbles. Resonance 22 (9), 873878.CrossRefGoogle Scholar
Kardar, M. 2007 Statistical Physics of Fields. Cambridge University Press.CrossRefGoogle Scholar
Kawasaki, K. 1966 Diffusion constants near the critical point for time-dependent Ising models. I. Phys. Rev. 145 (1), 224230.CrossRefGoogle Scholar
Kawasaki, K. 1970 Kinetic equations and time correlation functions of critical fluctuations. Ann. Phys. 61 (1), 156.CrossRefGoogle Scholar
Khan, S.A. & Shah, A. 2019 Simulation of the two-dimensional Rayleigh–Taylor instability problem by using diffuse-interface model. AIP Adv. 9 (8), 085312.CrossRefGoogle Scholar
Khomenko, E., Díaz, A., De, V., Angel, C., M, & Luna, M. 2014 Rayleigh–Taylor instability in prominences from numerical simulations including partial ionization effects. Astron. Astrophys. 565, A45.CrossRefGoogle Scholar
Kim, J. 2007 Phase field computations for ternary fluid flows. Comput. Meth. Appl. Mech. Engng 196 (45-48), 47794788.CrossRefGoogle Scholar
Kim, J. 2012 Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12 (3), 613661.CrossRefGoogle Scholar
Kim, J. & Kang, K. 2009 A numerical method for the ternary Cahn–Hilliard system with a degenerate mobility. Appl. Numer. Maths 59 (5), 10291042.CrossRefGoogle Scholar
Kim, J., Lee, S., Choi, Y., Lee, S.-M. & Jeong, D. 2016 Basic principles and practical applications of the Cahn–Hilliard equation. Math. Prob. Engng 2016, 111.Google Scholar
Kim, J. & Lowengrub, J. 2005 Phase field modeling and simulation of three-phase flows. Interface Free Bound. 7 (4), 435466.CrossRefGoogle Scholar
Kim, P. & Vogel, J. 2006 Antibubbles: factors that affect their stability. Colloids Surf. A: Physicochem. Engng Aspects 289 (1-3), 237244.CrossRefGoogle Scholar
Kiran, K.V., Gupta, A., Verma, A.K. & Pandit, R. 2023 Irreversibility in bacterial turbulence: insights from the mean-bacterial-velocity model. Phys. Rev. Fluids 8 (2), 023102.CrossRefGoogle Scholar
Kiran, K.V., Kumar, K., Gupta, A., Pandit, R. & Ray, S.S. 2025 Onset of intermittency and multiscaling in active turbulence. Phys. Rev. Lett. 134 (8), 088302.CrossRefGoogle ScholarPubMed
Kolluru, S.S.V., Sharma, P. & Pandit, R. 2022 Insights from a pseudospectral study of a potentially singular solution of the three-dimensional axisymmetric incompressible Euler equation. Phys. Rev. E 105 (6), 065107.CrossRefGoogle ScholarPubMed
Kolomenskiy, D. & Schneider, K. 2009 A Fourier spectral method for the Navier–Stokes equations with volume penalization for moving solid obstacles. J. Comput. Phys. 228 (16), 56875709.CrossRefGoogle Scholar
Kotopoulis, S., Delalande, A., Popa, M., Mamaeva, V., Dimcevski, G., Gilja, O. H., Postema, M., Gjertsen, B.T. & McCormack, E. 2014 Sonoporation-enhanced chemotherapy significantly reduces primary tumour burden in an orthotopic pancreatic cancer xenograft. Mol. Imaging Biol. 16 (1), 5362.CrossRefGoogle Scholar
Kotopoulis, S., Johansen, K., Gilja, O.H., Poortinga, A.T. & Postema, M. 2015 Acoustically active antibubbles. Acta Phys. Polonica A 127 (1), 99102.CrossRefGoogle Scholar
Kumar, K., Bandyopadhyay, P., Singh, S., Dharodi, V.S. & Sen, A. 2023 Kelvin–Helmholtz instability in a compressible dust fluid flow. Sci. Rep. 13 (1), 3979.CrossRefGoogle Scholar
Kumar, R., Rohilla, L. & Das, A.K. 2019 Passage of a Taylor bubble through a stratified liquid–liquid interface. Ind. Engng Chem. Res. 59 (9), 37573771.CrossRefGoogle Scholar
Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S. & Zanetti, G. 1994 Modelling merging and fragmentation in multiphase flows with surfer. J. Comput. Phys. 113 (1), 134147.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 2013 Statistical Physics, vol. 5. Elsevier.Google Scholar
Lanjewar, S. & Ramji, S. 2024 Dynamics of a deformable compound droplet under pulsatile flow. Phys. Fluids 36 (8), 083301.CrossRefGoogle Scholar
Lebowitz, J.L. & Kalos, M. 1976 Computer simulation of phase separation in a quenched binary alloy. Scripta Metall. 10 (1), 912.CrossRefGoogle Scholar
Lee, H.G. & Kim, J. 2013 Numerical simulation of the three-dimensional Rayleigh–Taylor instability. Comput. Math. Appl. 66 (8), 14661474.CrossRefGoogle Scholar
Lee, H.G. & Kim, J. 2015 Two-dimensional Kelvin–Helmholtz instabilities of multi-component fluids. Eur. J. Mech. B/Fluids 49, 7788.CrossRefGoogle Scholar
Lemarié-Rieusset, P.G. 2018 The Navier–Stokes Problem in the 21st Century. Chapman and Hall/CRC.CrossRefGoogle Scholar
Leray, J. 1934 Essai sur les mouvements plans d’un liquide visqueux que limitent des parois. J. Math. Pures Appl. 13, 331418.Google Scholar
Levant, M. & Steinberg, V. 2014 Complex dynamics of compound vesicles in linear flow. Phys. Rev. Lett. 112 (13), 138106.CrossRefGoogle ScholarPubMed
Lherm, V., Deguen, R., Alboussière, T. & Landeau, M. 2021 Rayleigh–Taylor instability in drop impact experiments. Phys. Rev. Fluids 6 (11), 110501.CrossRefGoogle Scholar
Lherm, V., Deguen, R., Alboussière, T. & Landeau, M. 2022 Rayleigh–Taylor instability in impact cratering experiments. J. Fluid Mech. 937, A20.CrossRefGoogle Scholar
Li, E., Al-Otaibi, S., Vakarelski, I.U. & Thoroddsen, S.T. 2014 Satellite formation during bubble transition through an interface between immiscible liquids. J. Fluid Mech. 744, R1.CrossRefGoogle Scholar
Li, G. & Koch, D.L. 2022 Dynamics of a self-propelled compound droplet. J. Fluid Mech. 952, A16.CrossRefGoogle Scholar
Li, T. 2023 Molecular dynamics simulations of droplet coalescence and impact dynamics on the modified surfaces: a review. Comput. Mater. Sci. 230, 112547.CrossRefGoogle Scholar
Lifshitz, I. 1962 Kinetics of ordering during second-order phase transitions. Sov. Phys. JETP 15, 939.Google Scholar
Lifshitz, I.M. & Slyozov, V.V. 1961 The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19 (1-2), 3550.CrossRefGoogle Scholar
Linkmann, M., Boffetta, G., Marchetti, M. & Eckhardt, B. 2019 Phase transition to large scale coherent structures in two-dimensional active matter turbulence. Phys. Rev. Lett. 122 (21), 214503.CrossRefGoogle ScholarPubMed
Liu, C.C., Qi, Y.W. & Yin, J.X. 2006 Regularity of solutions of the Cahn–Hilliard equation with non–constant mobility. Acta Math. Sin. 22 (4), 11391150.CrossRefGoogle Scholar
Liu, H., Lu, Y., Li, S., Yu, Y. & Sahu, K.C. 2021 Deformation and breakup of a compound droplet in three-dimensional oscillatory shear flow. Intl J. Multiphase Flow 134, 103472.CrossRefGoogle Scholar
Livescu, D., Wei, T. & Petersen, M. 2011 Direct numerical simulations of Rayleigh–Taylor instability. J. Phys.: Conf. Ser. 318, 082007.Google Scholar
Lothe, J. & Pound, G.M. 1962 Reconsiderations of nucleation theory. J. Chem. Phys. 36 (8), 20802085.CrossRefGoogle Scholar
Lowengrub, J. & Truskinovsky, L. 1998 Quasi–incompressible Cahn–Hilliard fluids and topological transitions. Poc. R. Soc. Lond A: Math. Phys. Engng Sci. 454(1978), 26172654.CrossRefGoogle Scholar
Lowengrub, J.S., Rätz, A. & Voigt, A. 2009 Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79 (3), 031926.CrossRefGoogle ScholarPubMed
Luo, G. & Hou, T.Y. 2014 Potentially singular solutions of the 3D axisymmetric Euler equations. Proc. Natl Acad. Sci. USA 111 (36), 1296812973.CrossRefGoogle ScholarPubMed
Ma, S.-K. 2018 Modern Theory of Critical Phenomena. Routledge.CrossRefGoogle Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659708.CrossRefGoogle Scholar
Magnaudet, J. & Mercier, M.J. 2020 Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annu. Rev. Fluid Mech. 52 (1), 6191.CrossRefGoogle Scholar
Majda, A.J., Bertozzi, A.L. & Ogawa, A. 2002 Vorticity and incompressible flow. Cambridge texts in applied mathematics. Appl. Mech. Rev. 55 (4), B77B78.CrossRefGoogle Scholar
Majumdar, S. & Sood, A. 2011 Universality and scaling behavior of injected power in elastic turbulence in wormlike micellar gel. Phys. Rev. E 84 (1), 015302.CrossRefGoogle ScholarPubMed
Manga, M. & Stone, H. 1995 Low Reynolds number motion of bubbles, drops and rigid spheres through fluid–fluid interfaces. J. Fluid Mech 287, 279298.CrossRefGoogle Scholar
Marchetti, M., Joanny, J.-F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. & Simha, R. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85 (3), 11431189.CrossRefGoogle Scholar
Martinelli, F. 2004 Lectures on Glauber Dynamics for Discrete Spin Models. Lecture on Probability Theory and Statistics (Saint-Flour 1997), p. 93. Springer.Google Scholar
Mathai, V., Lohse, D. & Sun, C. 2020 Bubbly and buoyant particle-laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11 (1), 529559.CrossRefGoogle Scholar
McHale, G., Afify, N., Armstrong, S., Wells, G. G. & Ledesma-Aguilar, R. 2022 The liquid Young’s law on slips: liquid–liquid interfacial tensions and zisman plots. Langmuir 38 (32), 1003210042.CrossRefGoogle Scholar
McWilliams, J.C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 2143.CrossRefGoogle Scholar
Mercado, J.M., Gomez, D.C., Van, D., Sun, C.& Lohse, D. 2010 On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650, 287306.CrossRefGoogle Scholar
Meyer, M., Desbrun, M., Schröder, P. & Barr, A.H. 2003 Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III, pp. 3557. Springer.CrossRefGoogle Scholar
Miranville, A. 2021 The Cahn–Hilliard equation: recent advances and applications. Jahresber. Dtsch. Math. Ver. 123, 5762.Google Scholar
Mirjalili, S., Ivey, C.B. & Mani, A. 2019 Comparison between the diffuse interface and volume of fluid methods for simulating two-phase flows. Intl J. Multiphase Flow 116, 221238.CrossRefGoogle Scholar
Mishin, V. & Tomozov, V. 2016 Kelvin–Helmholtz instability in the solar atmosphere, solar wind and geomagnetosphere. Solar Phys. 291 (11), 31653184.CrossRefGoogle Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37 (1), 239261.CrossRefGoogle Scholar
Mittal, R. & Seo, J.H. 2023 Origin and evolution of immersed boundary methods in computational fluid dynamics. Phys. Rev. Fluids 8 (10), 100501.CrossRefGoogle ScholarPubMed
Moerman, P.G., Hohenberg, P.C., Vanden-Eijnden, E. & Brujic, J. 2018 Emulsion patterns in the wake of a liquid–liquid phase separation front. Proc. Natl Acad. Sci. USA 115 (14), 35993604.CrossRefGoogle ScholarPubMed
Mohan, A. & Tomar, G. 2024 Volume of fluid method: a brief review. J. Indian Inst. Sci. 104 (1), 120.CrossRefGoogle Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30 (1), 539578.CrossRefGoogle Scholar
Mokbel, D., Abels, H. & Aland, S. 2018 A phase-field model for fluid–structure interaction. J. Comput. Phys. 372, 823840.CrossRefGoogle Scholar
Morales, J.A., Leroy, M., Bos, W.J. & Schneider, K. 2014 Simulation of confined magnetohydrodynamic flows with dirichlet boundary conditions using a pseudo-spectral method with volume penalization. J. Comput. Phys. 274, 6494.CrossRefGoogle Scholar
Mukherjee, S., Singh, R.K., James, M. & Ray, S.S. 2021 Anomalous diffusion and Lévy walks distinguish active from inertial turbulence. Phys. Rev. Lett. 127 (11), 118001.CrossRefGoogle Scholar
Mukherjee, S., Singh, R.K., James, M. & Ray, S.S. 2023 Intermittency, fluctuations and maximal chaos in an emergent universal state of active turbulence. Nat. Phys. 19 (6), 17.CrossRefGoogle Scholar
Müller, W.-C. & Biskamp, D. 2000 Scaling properties of three-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 84 (3), 475478.CrossRefGoogle ScholarPubMed
Münkel, C. 1993 Large scale simulations of the kinetic ising model. Intl J. Mod. Phys. C 4 (06), 11371145.CrossRefGoogle Scholar
Natsui, S., Takai, H., Kumagai, T., Kikuchi, T. & Suzuki, R. O. 2014 Multiphase particle simulation of gas bubble passing through liquid/liquid interfaces. Mater. Trans. 55 (11), 17071715.CrossRefGoogle Scholar
Navier, C. 1823 Mémoire sur les lois du mouvement des fluides. Mémoires De l’Académie Royale Des Sciences De l’Institut De France 6(1823), 389440.Google Scholar
Nothard, S., McKenzie, D., Haines, J. & Jackson, J. 1996 Gaussian curvature and the relationship between the shape and the deformation of the Tonga slab. Geophys. J. Intl. 127 (2), 311327.CrossRefGoogle Scholar
Oki, K., Sagane, H. & Eguchi, T. 1977 Separation and domain structure … in Fe-Al alloys. J. Phys. Colloques 38-38 (C7), 414417.Google Scholar
Onsager, L. 1944 Crystal statistics. i. a two-dimensional model with an order-disorder transition. Phys. Rev. 65 (3-4), 3–4,117.CrossRefGoogle Scholar
Onuki, A. 2002 Phase Transition Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Orszag, S. A. 1971 On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J. Atmos. Sci. 28 (6), 10741074.2.0.CO;2>CrossRefGoogle Scholar
Orszag, S.A. & Pao, Y.-H. 1975 Numerical computation of turbulent shear flows. In Advances in Geophysics, vol. 18, pp. 225236. Elsevier.Google Scholar
Padhan, N.B., Kiran, K.V. & Pandit, R. 2024 a Novel turbulence and coarsening arrest in active-scalar fluids. Soft Matter 20 (17), 36203627.CrossRefGoogle ScholarPubMed
Padhan, N.B. & Pandit, R. 2023 a Activity-induced droplet propulsion and multifractality. Phys. Rev. Res. 5 (3), L032013.CrossRefGoogle Scholar
Padhan, N.B. & Pandit, R. 2023 b Unveiling the spatiotemporal evolution of liquid-lens coalescence: self-similarity, vortex quadrupoles, and turbulence in a three-phase fluid system. Phys. Fluids 35 (11), 112105.CrossRefGoogle Scholar
Padhan, N.B. & Pandit, R. 2024 Interfaces as transport barriers in two-dimensional Cahn–Hilliard–Navier–Stokes turbulence. arXiv preprint arXiv: 2404.17770.Google Scholar
Padhan, N.B., Vincenzi, D. & Pandit, R. 2024 b Interface-induced turbulence in viscous binary fluid mixtures. Phys. Rev. Fluids 9 (12), L122401.CrossRefGoogle Scholar
Padhan, N.B. & Voigt, A. 2025 Suppression of hyperuniformity in hydrodynamic scalar active field theories. J. Phys.: Condens. Matter 37 (10), 105101.Google ScholarPubMed
Pal, N. 2016 Cahn–Hilliard–Navier–Stokes investigations of binary-fluid turbulence and droplet dynamics. PhD thesis. Indian Institute of Science, Bangalore, India.Google Scholar
Pal, N., Perlekar, P., Gupta, A. & Pandit, R. 2016 Binary-fluid turbulence: signatures of multifractal droplet dynamics and dissipation reduction. Phys. Rev. E 93 (6), 063115.CrossRefGoogle ScholarPubMed
Pal, N., Ramadugu, R., Perlekar, P. & Pandit, R. 2022 Ephemeral antibubbles: spatiotemporal evolution from direct numerical simulations. Phys. Rev. Res. 4 (4), 043128.CrossRefGoogle Scholar
Pan, J., Xing, C. & Luo, H. 2020 Uniform regularity of the weak solution to higher-order Navier–Stokes–Cahn–Hilliard systems. J. Math. Anal. Applics. 486 (2), 123925.CrossRefGoogle Scholar
Pandey, V., Mitra, D. & Perlekar, P. 2023 Kolmogorov turbulence coexists with pseudo-turbulence in buoyancy-driven bubbly flows. Phys. Rev. Lett. 131 (11), 114002.CrossRefGoogle ScholarPubMed
Pandey, V., Ramadugu, R. & Perlekar, P. 2020 Liquid velocity fluctuations and energy spectra in three-dimensional buoyancy-driven bubbly flows. J. Fluid Mech. 884, R6.CrossRefGoogle Scholar
Pandit, R. et al. 2017 An overview of the statistical properties of two-dimensional turbulence in fluids with particles, conducting fluids, fluids with polymer additives, binary-fluid mixtures, and superfluids. Phys. Fluids 29 (11), 111112.CrossRefGoogle Scholar
Pandit, R., Forgacs, G. & Rujan, P. 1981 Finite-size calculations for the kinetic Ising model. Phys. Rev. B 24 (3), 15761578.CrossRefGoogle Scholar
Pandit, R., Perlekar, P. & Ray, S.S. 2009 Statistical properties of turbulence: an overview. Pramana 73 (1), 157191.CrossRefGoogle Scholar
Pandit, R., Schick, M. & Wortis, M. 1982 Systematics of multilayer adsorption phenomena on attractive substrates. Phys. Rev. B 26 (9), 51125140.CrossRefGoogle Scholar
Pandit, R. & Wortis, M. 1982 Surfaces and interfaces of lattice models: mean-field theory as an area-preserving map. Phys. Rev. B 25 (5), 32263241.CrossRefGoogle Scholar
Pandya, G. & Shkoller, S. 2023 Interface models for three-dimensional Rayleigh–Taylor instability. J. Fluid Mech. 959, A10.CrossRefGoogle Scholar
Patterson, G.S. Jr. & Orszag, S.A. 1971 Interface models for three-dimensional Rayleigh–Taylor instability. Phys. Fluids 14 (11), 25382541.CrossRefGoogle Scholar
Paulsen, J.D., Burton, J.C. & Nagel, S.R. 2011 Viscous to inertial crossover in liquid drop coalescence. Phys. Rev. Lett. 106 (11), 114501.CrossRefGoogle ScholarPubMed
Paulsen, J.D., Carmigniani, R., Kannan, A., Burton, J.C. & Nagel, S.R. 2014 Coalescence of bubbles and drops in an outer fluid. Nat. Commun. 5 (1), 3182.CrossRefGoogle Scholar
Pavuluri, S., Holtzman, R., Kazeem, L., Mohammed, M., Seers, T.D. & Rabbani, H.S. 2023 Interplay of viscosity and wettability controls fluid displacement in porous media. Phys. Rev. Fluids 8 (9), 094002.CrossRefGoogle Scholar
Perlekar, P., Benzi, R., Clercx, H.J., Nelson, D.R. & Toschi, F. 2014 Spinodal decomposition in homogeneous and isotropic turbulence. Phys. Rev. Lett. 112 (1), 014502.CrossRefGoogle ScholarPubMed
Perlekar, P., Mitra, D. & Pandit, R. 2006 Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence. Phys. Rev. Lett. 97 (26), 264501.CrossRefGoogle ScholarPubMed
Perlekar, P., Mitra, D. & Pandit, R. 2010 Direct numerical simulations of statistically steady, homogeneous, isotropic fluid turbulence with polymer additives. Phys. Rev. E 82 (6), 066313.CrossRefGoogle ScholarPubMed
Perlekar, P., Pal, N. & Pandit, R. 2017 Two-dimensional turbulence in symmetric binary-fluid mixtures: coarsening arrest by the inverse cascade. Sci. Rep. 7 (1), 44589.CrossRefGoogle ScholarPubMed
Perlekar, P. & Pandit, R. 2010 Turbulence-induced melting of a nonequilibrium vortex crystal in a forced thin fluid film. New J. Phys. 12 (2), 023033.CrossRefGoogle Scholar
Pisegna, G., Rana, N., Golestanian, R. & Saha, S. 2025 Can hydrodynamic interactions destroy travelling waves formed by non-reciprocity? arXiv preprint arXiv: 2501.01330.Google Scholar
Plan, E.L.C. IV, Gupta, A., Vincenzi, D. & Gibbon, J.D. 2017 Lyapunov dimension of elastic turbulence. J. Fluid Mech. 822, R4.CrossRefGoogle Scholar
Plischke, M. & Bergersen, B. 1994 Equilibrium Statistical Physics. World Scientific.Google Scholar
Popinet, S. & Zaleski, S. 1999 A front-tracking algorithm for accurate representation of surface tension. Intl J. Numer. Meth. Fluids 30 (6), 775793.3.0.CO;2-#>CrossRefGoogle Scholar
Pramanik, R., Verstappen, R. & Onck, P. 2024 Computational fluid–structure interaction in biology and soft robots: a review. Phys. Fluids 36 (10), 101302.CrossRefGoogle Scholar
Prosperetti, A. 2017 Vapor bubbles. Annu. Rev. Fluid Mech. 49 (1), 221248.CrossRefGoogle Scholar
Prosperetti, A. & Tryggvason, G. 2007 Introduction: a computational approach to multiphase flow. Comput. Meth. Multiphase Flow 119.CrossRefGoogle Scholar
Leonardo, P., Guido, B. & Stefano, M. 2023 Flocking turbulence of microswimmers in confined domains. Phys. Rev. E 107 (5), 055107.Google Scholar
Puri, S. 2004 Kinetics of phase transitions. Phase Transition 77 (5-7), 407431.CrossRefGoogle Scholar
Puri, S. & Wadhawan, V. 2009 Kinetics of Phase Transitions. CRC Press.CrossRefGoogle Scholar
Rabbani, G. & Ray, B. 2024 Interaction of inline bubbles with immiscible liquids interface. Chem. Engng Sci. 286, 119647.CrossRefGoogle Scholar
Ramadugu, R., Perlekar, P. & Govindarajan, R. 2022 Surface tension as the destabiliser of a vortical interface. J. Fluid Mech. 936, A45.CrossRefGoogle Scholar
Ramirez, F. & Diamond, P. 2024 Staircase resiliency in a fluctuating cellular array. Phys. Rev. E 109 (2), 025209.CrossRefGoogle Scholar
Rana, N., Chatterjee, R., Ro, S., Levine, D., Ramaswamy, S. & Perlekar, P. 2024 Defect turbulence in a dense suspension of polar, active swimmers. Phys. Rev. E 109 (2), 024603.CrossRefGoogle Scholar
Rana, N. & Perlekar, P. 2020 Coarsening in the two-dimensional incompressible Toner–Tu equation: Signatures of turbulence. Phys. Rev. E 102 (3), 032617.CrossRefGoogle ScholarPubMed
Rätz, A. & Voigt, A. 2006 PDE’s on surfaces—a diffuse interface approach. Commun. Math. Sci. 4 (3), 575590.CrossRefGoogle Scholar
Robinson, J.C. 2020 The Navier–Stokes regularity problem. Phil. Trans. R. Soc. Lond. A 378 (2174), 20190526.Google ScholarPubMed
Robinson, J.C., Rodrigo, J.L. & Sadowski, W. 2016 The three-dimensional Navier–Stokes equations. In Classical Theory, vol. 157, Cambridge University Press.Google Scholar
Rottman, C. & Wortis, M. 1984 Statistical mechanics of equilibrium crystal shapes: interfacial phase diagrams and phase transitions. Phys. Rep. 103 (1-4), 5979.CrossRefGoogle Scholar
Rowlinson, J.S. & Widom, B. 2013 Molecular Theory of Capillarity. Courier Corporation.Google Scholar
Rubinstein, M. & Colby, R. 2003 Polymer Physics. Oxford University Press.CrossRefGoogle Scholar
Saha, S., Agudo-Canalejo, J. & Golestanian, R. 2020 Scalar active mixtures: the nonreciprocal Cahn–Hilliard model. Phys. Rev. X 10 (4), 041009.Google Scholar
Sahoo, G., Padhan, N.B., Basu, A. & Pandit, R. 2020 Direct numerical simulations of three-dimensional magnetohydrodynamic turbulence with random, power-law forcing. arXiv preprint arXiv: 2011.04277.Google Scholar
Sahoo, G., Perlekar, P. & Pandit, R. 2011 Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence. New J. Phys. 13 (1), 013036.CrossRefGoogle Scholar
San, O. & Staples, A.E. 2012 High-order methods for decaying two-dimensional homogeneous isotropic turbulence. Comput. Fluids 63, 105127.CrossRefGoogle Scholar
Santra, S., Panigrahi, D.P., Das, S. & Chakraborty, S. 2020 Shape evolution of compound droplet in combined presence of electric field and extensional flow. Phys. Rev. Fluids 5 (6), 063602.CrossRefGoogle Scholar
Scarbolo, L. & Soldati, A. 2013 Turbulence modulation across the interface of a large deformable drop. J. Turbul. 14 (11), 2743.CrossRefGoogle Scholar
Scheel, T., Xie, Q., Sega, M. & Harting, J. 2023 Viscous to inertial coalescence of liquid lenses: a lattice Boltzmann investigation. Phys. Rev. Fluids 8 (7), 074201.CrossRefGoogle Scholar
Scheid, B., Dorbolo, S., Arriaga, L.R. & Rio, E. 2012 Antibubble dynamics: the drainage of an air film with viscous interfaces. Phys. Rev. Lett. 109 (26), 264502.CrossRefGoogle ScholarPubMed
Sethian, J.A. & Smereka, P. 2003 Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35 (1), 341372.CrossRefGoogle Scholar
Shaebani, M.R., Wysocki, A., Winkler, R.G., Gompper, G. & Rieger, H. 2020 Computational models for active matter. Nat. Rev. Phys. 2 (4), 181199.CrossRefGoogle Scholar
Shah, A., Saeed, S. & Yuan, L. 2017 An artificial compressibility method for 3D phase-field model and its application to two-phase flows. Intl. J. Comp. Meth-Sing. 14 (05), 1750059.CrossRefGoogle Scholar
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47 (3), 18151819.CrossRefGoogle ScholarPubMed
Shan, X. & Chen, H. 1994 Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49 (4), 29412948.CrossRefGoogle ScholarPubMed
Sharma, P., McCourt, M., Quataert, E. & Parrish, I.J. 2012 Thermal instability and the feedback regulation of hot haloes in clusters, groups and galaxies. Mon. Not. R. Astron. Soc. 420 (4), 31743194.CrossRefGoogle Scholar
Shaw, R.A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35 (1), 183227.CrossRefGoogle Scholar
Shek, A.C.M. & Kusumaatmaja, H. 2022 Spontaneous phase separation of ternary fluid mixtures. Soft Matter 18 (31), 58075814.CrossRefGoogle ScholarPubMed
Siggia, E.D. 1977 Pseudospin formulation of kinetic Ising models. Phys. Rev. B 16 (5), 23192320.CrossRefGoogle Scholar
Siggia, E.D. 1979 Late stages of spinodal decomposition in binary mixtures. Phys. Rev. A 20 (2), 595605.CrossRefGoogle Scholar
Singh, A. & Puri, S. 2015 Phase separation in ternary fluid mixtures: a molecular dynamics study. Soft Matter 11 (11), 22132219.CrossRefGoogle ScholarPubMed
Singh, K. & Bart, H.-J. 2015 Passage of a single bubble through a liquid–liquid interface. Ind. Engng Chem. Res. 54 (38), 94789493.CrossRefGoogle Scholar
Singh, R.K., Perlekar, P., Mitra, D. & Rosti, M.E. 2024 Intermittency in the not-so-smooth elastic turbulence. Nat. Commun. 15 (1), 4070.CrossRefGoogle ScholarPubMed
Sinha, K.P. & Thaokar, R.M. 2019 A theoretical study on the dynamics of a compound vesicle in shear flow. Soft Matter 15 (35), 69947017.CrossRefGoogle ScholarPubMed
Sinhababu, A. & Bhattacharya, A. 2022 A pseudo-spectral based efficient volume penalization scheme for Cahn–Hilliard equation in complex geometries. Math. Comput. Simul. 199, 124.CrossRefGoogle Scholar
Sinhababu, A., Bhattacharya, A. & Ayyalasomayajula, S. 2021 An efficient pseudo-spectral based phase field method for dendritic solidification. Comput. Mater. Sci. 186, 109967.CrossRefGoogle Scholar
Sob’yanin, D.N. 2015 Theory of the antibubble collapse. Phys. Rev. Lett. 114 (10), 104501.CrossRefGoogle ScholarPubMed
Soligo, G., Roccon, A. & Soldati, A. 2019 Coalescence of surfactant-laden drops by phase field method. J. Comput. Phys. 376, 12921311.CrossRefGoogle Scholar
Steinberg, V. 2021 Elastic turbulence: an experimental view on inertialess random flow. Annu. Rev. Fluid Mech. 53 (1), 2758.CrossRefGoogle Scholar
Stokes, G.G. 1901 Mathematical and Physical Papers, vol. 3. Cambridge University Press.Google Scholar
Stone, H.A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26 (1), 65102.CrossRefGoogle Scholar
Stone, H. & Leal, L. 1990 Breakup of concentric double emulsion droplets in linear flows. J. Fluid Mech. 211, 123156.CrossRefGoogle Scholar
Suchanek, T., Kroy, K. & Loos, S.A. 2023 Entropy production in the nonreciprocal Cahn–Hilliard model. Phys. Rev. E 108 (6), 064610.CrossRefGoogle ScholarPubMed
Suzuki, M. & Kubo, R. 1968 Dynamics of the ising model near the critical point. i. J. Phys. Soc. Japan 24 (1), 5160.CrossRefGoogle Scholar
Talat, N., Mavrič, B., Hatić, V., Bajt, S. & Šarler, B. 2018 Phase field simulation of Rayleigh–Taylor instability with a meshless method. Engng Anal. Bound. Elem. 87, 7889.CrossRefGoogle Scholar
Täuber, U.C. 2013 Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior. Cambridge University Press.CrossRefGoogle Scholar
Teigen, K.E., Song, P., Lowengrub, J. & Voigt, A. 2011 A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230 (2), 375393.CrossRefGoogle ScholarPubMed
Thompson, C.J. 2015 Mathematical Statistical Mechanics. Princeton University Press.CrossRefGoogle Scholar
Tian, C. & Chen, Y. 2016 Numerical simulations of Kelvin–Helmholtz instability: a two-dimensional parametric study. Astrophys. J. 824 (1), 60.CrossRefGoogle Scholar
Timm, K., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E. 2016 The Lattice Boltzmann Method: Principles and Practice. Springer International Publishing AG.Google Scholar
Tiribocchi, A., Wittkowski, R., Marenduzzo, D. & Cates, M.E. 2015 Active model h: scalar active matter in a momentum-conserving fluid. Phys. Rev. Lett. 115 (18), 188302.CrossRefGoogle Scholar
Toner, J. & Tu, Y. 1998 Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E 58 (4), 48284858.CrossRefGoogle Scholar
Toner, J., Tu, Y. & Ramaswamy, S. 2005 Hydrodynamics and phases of flocks. Ann. Phys. 318 (1), 170244.CrossRefGoogle Scholar
Tóth, G.I., Zarifi, M. & Kvamme, B. 2016 Phase-field theory of multicomponent incompressible Cahn–Hilliard liquids. Phys. Rev. E 93 (1), 013126.CrossRefGoogle ScholarPubMed
Treeratanaphitak, T. & Abukhdeir, N.M. 2023 Diffuse-interface blended method for imposing physical boundaries in two-fluid flows. ACS Omega 8 (17), 1551815534.CrossRefGoogle ScholarPubMed
Tryggvason, G. 1988 Numerical simulations of the Rayleigh–Taylor instability. J. Comput. Phys. 75 (2), 253282.CrossRefGoogle Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–liquid Multiphase Flows. Cambridge University Press.Google Scholar
Valle, N., Trias, F.X. & Castro, J. 2020 An energy-preserving level set method for multiphase flows. J. Comput. Phys. 400, 108991.CrossRefGoogle Scholar
Van Kampen, N. 2007 Stochastic Processes in Chemistry and Physics, 3rd edn. Elsevier.Google Scholar
Veerapaneni, S.K., Young, Y.-N., Vlahovska, P.M. & Bławzdziewicz, J. 2011 Dynamics of a compound vesicle in shear flow. Phys. Rev. Lett. 106 (15), 158103.CrossRefGoogle ScholarPubMed
Vela-Martín, A. & Avila, M. 2021 Deformation of drops by outer eddies in turbulence. J. Fluid Mech. 929, A38.CrossRefGoogle Scholar
Vela-Martín, A. & Avila, M. 2022 Memoryless drop breakup in turbulence. Sci. Adv. 8 (50), eabp9561.CrossRefGoogle ScholarPubMed
Verma, M.K. 2004 Statistical theory of magnetohydrodynamic turbulence: recent results. Phys. Rep. 401 (5-6), 229380.CrossRefGoogle Scholar
Vey, S. & Voigt, A. 2007 Amdis: adaptive multidimensional simulations. Comput. Vis. Sci. 10 (1), 5767.CrossRefGoogle Scholar
Violeau, D. & Rogers, B.D. 2016 Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J. Hydraul. Res. 54 (1), 126.CrossRefGoogle Scholar
Vitry, Y., Dorbolo, S., Vermant, J. & Scheid, B. 2019 Controlling the lifetime of antibubbles. Adv. Colloid Interface 270, 7386.CrossRefGoogle ScholarPubMed
Voigt, A. & Hoffman, K.-H. 2002 Asymptotic behavior of solutions to the Cahn–Hilliard equation in spherically symmetric domains. Appl. Anal. 81 (4), 893903.CrossRefGoogle Scholar
Wang, F., Altschuh, P., Ratke, L., Zhang, H., Selzer, M. & Nestler, B. 2019 Progress report on phase separation in polymer solutions. Adv. Mater. 31 (26), 1806733.CrossRefGoogle ScholarPubMed
Wang, Z.-B., Chen, R., Wang, H., Liao, Q., Zhu, X. & Li, S.-Z. 2016 An overview of smoothed particle hydrodynamics for simulating multiphase flow. Appl. Math. Model 40 (23-24), 96259655.CrossRefGoogle Scholar
Wensink, H.H., Dunkel, J., Heidenreich, S., Drescher, K., Goldstein, R.E., Löwen, H. & Yeomans, J.M. 2012 Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. 109 (36), 1430814313.CrossRefGoogle ScholarPubMed
Wittkowski, R., Tiribocchi, A., Stenhammar, J., Allen, R.J., Marenduzzo, D. & Cates, M.E. 2014 Scalar $\Phi$ 4 field theory for active-particle phase separation. Nat. Commun. 5 (1), 4351.CrossRefGoogle ScholarPubMed
Wu, H. 2021 A review on the Cahn–Hilliard equation: classical results and recent advances in dynamic boundary conditions. arXiv preprint arXiv: 2112.13812.Google Scholar
Yadav, S.K., Miura, H. & Pandit, R. 2022 Statistical properties of three-dimensional Hall magnetohydrodynamics turbulence. Phys. Fluids 34 (9), 095135.CrossRefGoogle Scholar
Yilmaz, I., Davidson, L., Edis, F. & Saygin, H. 2011 Numerical simulation of Kelvin–Helmholtz instability using an implicit, non-dissipative dns algorithm. J. Phys.: Conf. Ser. 318, 032024.Google Scholar
Yokoi, K. 2007 Efficient implementation of thinc scheme: a simple and practical smoothed VoF algorithm. J. Comput. Phys. 226 (2), 19852002.CrossRefGoogle Scholar
You, Z., Baskaran, A. & Marchetti, M. 2020 Nonreciprocity as a generic route to traveling states. Proc. Natl. Acad. Sci. USA 117 (33), 1976719772.CrossRefGoogle ScholarPubMed
Young, Y.-N., Tufo, H., Dubey, A. & Rosner, R. 2001 On the miscible Rayleigh–Taylor instability: two and three dimensions. J. Fluid Mech. 447, 377408.CrossRefGoogle Scholar
Youngs, D. 1992 Rayleigh–Taylor instability: numerical simulation and experiment. Plasma Phys. Control. Fusion 34 (13), 20712076.CrossRefGoogle Scholar
Yuan, H.-Z., Shu, C., Wang, Y. & Shu, S. 2018 A simple mass-conserved level set method for simulation of multiphase flows. Phys. Fluids 30 (4), 040908.CrossRefGoogle Scholar
Zanella, R., Tegze, G., Tellier, L., Romain, & Henry, H. 2020 Two- and three-dimensional simulations of Rayleigh–Taylor instabilities using a coupled Cahn–Hilliard/Navier–Stokes model. Phys. Fluids 32 (12), 124115.CrossRefGoogle Scholar
Zheng, X., Wang, Z., Triantafyllou, M. & Karniadakis, G. 2021 Fluid-structure interactions in a flexible pipe conveying two-phase flow. Intl J. Multiphase Flow 141, 103667.CrossRefGoogle Scholar
Zhou, X., Dong, B. & Li, W. 2020 Phase-field-based LBM analysis of KHI and RTI in wide ranges of density ratio, viscosity ratio, and Reynolds number. Intl J. Aerospace Engng 2020, 114.Google Scholar
Zhu, C.-S., Ma, F.-l., Lei, P., Han, D. & Feng, L. 2021 Comparison between level set and phase field method for simulating bubble movement behavior under electric field. Chin. J. Phys. 71, 385396.CrossRefGoogle Scholar
Zia, R., Nazir, A., Poortinga, A.T., van, N. & Cornelus, F. 2022 Advances in antibubble formation and potential applications. Adv. Colloid Interface 305, 102688.CrossRefGoogle ScholarPubMed
Zinn-Justin, J. 2021 Quantum Field Theory and Critical Phenomena, vol. 171. Oxford University Press.CrossRefGoogle Scholar
Zou, J., Ji, C., Yuan, B., Ruan, X. & Fu, X. 2013 Collapse of an antibubble. Phys. Rev. E 87 (6), 061002.CrossRefGoogle ScholarPubMed