Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T14:03:59.228Z Has data issue: false hasContentIssue false

Buoyancy-driven bubbly flows: ordered and free rise at small and intermediate volume fraction

Published online by Cambridge University Press:  03 March 2017

Aurore Loisy
Affiliation:
Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS, Université Claude Bernard Lyon 1, École Centrale de Lyon, INSA de Lyon, 36 avenue Guy de Collongue, 69134 Écully CEDEX, France
Aurore Naso
Affiliation:
Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS, Université Claude Bernard Lyon 1, École Centrale de Lyon, INSA de Lyon, 36 avenue Guy de Collongue, 69134 Écully CEDEX, France
Peter D. M. Spelt
Affiliation:
Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS, Université Claude Bernard Lyon 1, École Centrale de Lyon, INSA de Lyon, 36 avenue Guy de Collongue, 69134 Écully CEDEX, France

Abstract

Various expressions have been proposed previously for the rise velocity of gas bubbles in homogeneous steady bubbly flows, generally a monotonically decreasing function of the bubble volume fraction. For suspensions of freely moving bubbles, some of these are of the form expected for ordered arrays of bubbles, and vice versa, as they do not reduce to the behaviour expected theoretically in the dilute limit. The microstructure of weakly inhomogeneous bubbly flows not being known generally, the effect of microstructure is an important consideration. We revisit this problem here for bubbly flows at small to moderate Reynolds number values for deformable bubbles, using direct numerical simulation and analysis. For ordered suspensions, the rise velocity is demonstrated not to be monotonically decreasing with volume fraction due to cooperative wake interactions. The fore-and-aft asymmetry of an isolated ellipsoidal bubble is reversed upon increasing the volume fraction, and the bubble aspect ratio approaches unity. Recent work on rising bubble pairs is used to explain most of these results; the present work therefore forms a platform of extending the former to suspensions of many bubbles. We adopt this new strategy also to support the existence of the oblique rise of ordered suspensions, the possibility of which is also demonstrated analytically. Finally, we demonstrate that most of the trends observed in ordered systems also appear in freely evolving suspensions. These similarities are supported by prior experimental measurements and attributed to the fact that free bubbles keep the same neighbours for extended periods of time.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auton, T. R. 1987 The lift force on a spherical body in a rotational flow. J. Fluid Mech. 183, 199218.Google Scholar
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52, 245268.Google Scholar
Bhaga, D. & Weber, M. E. 1981 Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech. 105, 6185.Google Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.Google Scholar
Brenner, H. & Cox, R. G. 1963 The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech. 17, 561595.CrossRefGoogle Scholar
Bunner, B & Tryggvason, G. 2002a Dynamics of homogeneous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles. J. Fluid Mech. 466, 1752.Google Scholar
Bunner, B. & Tryggvason, G. 2002b Dynamics of homogeneous bubbly flows. Part 2. Velocity fluctuations. J. Fluid Mech. 466, 5384.CrossRefGoogle Scholar
Bunner, B. & Tryggvason, G. 2003 Effect of bubble deformation on the properties of bubbly flows. J. Fluid Mech. 495, 77118.Google Scholar
Cartellier, A., Andreotti, M. & Sechet, P. 2009 Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number. Phys. Rev. E 80 (6), 065301.Google ScholarPubMed
Cartellier, A. & Rivière, N. 2001 Bubble-induced agitation and microstructure in uniform bubbly flows at small to moderate particle Reynolds numbers. Phys. Fluids 13 (8), 21652181.CrossRefGoogle Scholar
Chorin, A 1968 Numerical solution of the Navier–Stokes equations. Maths Comput. 22, 745762.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops, and Particles. Academic Press.Google Scholar
Colombet, D., Legendre, D., Risso, F., Cockx, A. & Guiraud, P. 2015 Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction. J. Fluid Mech. 763, 254285.Google Scholar
Davis, R. H. & Acrivos, A 1985 Sedimentation of noncolloidal particles at low Reynolds numbers. Annu. Rev. Fluid Mech. 17, 91118.Google Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44, 97121.Google Scholar
Esmaeeli, A. & Tryggvason, G. 1998 Direct numerical simulations of bubbly flows. Part 1. Low Reynolds number arrays. J. Fluid Mech. 377, 313345.Google Scholar
Esmaeeli, A. & Tryggvason, G. 1999 Direct numerical simulations of bubbly flows. Part 2. Moderate Reynolds number arrays. J. Fluid Mech. 385, 325358.Google Scholar
Esmaeeli, A. & Tryggvason, G. 2005 A direct numerical simulation study of the buoyant rise of bubbles at O (100) Reynolds number. Phys. Fluids 17, 093303.CrossRefGoogle Scholar
Fabre, D., Tchoufag, J. & Magnaudet, J. 2012 The steady oblique path of buoyancy-driven disks and spheres. J. Fluid Mech. 707, 2436.CrossRefGoogle Scholar
Garnier, C., Lance, M. & Marié, J.-L. 2002 Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction. Exp. Therm. Fluid Sci. 26, 811815.Google Scholar
Gillissen, J. J. J., Sundaresan, S. & Van Den Akker, H. E. A. 2011 A lattice Boltzmann study on the drag force in bubble swarms. J. Fluid Mech. 679, 101121.Google Scholar
Glendinning, A. B. & Russel, W. B. 1982 A pairwise additive description of sedimentation and diffusion in concentrated suspensions of hard spheres. J. Colloid Interface Sci. 89, 124143.CrossRefGoogle Scholar
Gottlieb, S. & Shu, C.-W. 1998 Total variation diminishing Runge–Kutta schemes. Maths Comput. 67, 7385.Google Scholar
Grace, J. R. 1973 Shapes and velocities of bubbles rising in infinite liquids. Trans. Inst. Chem. Engrs 51, 116120.Google Scholar
Guazzelli, E. & Hinch, J. 2011 Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 43, 97116.Google Scholar
Hadamard, J. 1911 Mouvement permanent lent d’une sphere liquide et visqueuse dans un liquide visqueux. C. R. Acad. Sci. Paris 152, 17351738.Google Scholar
Hallez, Y. & Legendre, D. 2011 Interaction between two spherical bubbles rising in a viscous liquid. J. Fluid Mech. 673, 406431.Google Scholar
Harper, J. F. 1970 On bubbles rising in line at large Reynolds numbers. J. Fluid Mech. 41, 751758.Google Scholar
Harper, J. F. 1997 Bubbles rising in line: why is the first approximation so bad? J. Fluid Mech. 351, 289300.Google Scholar
Harten, A., Engquist, B., Osher, S. & Chakravarthy, S. R. 1987 Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231303.Google Scholar
Hill, R. J., Koch, D. L. & Ladd, A. J. C. 2001 The first effects of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 213241.CrossRefGoogle Scholar
Hua, J., Stene, J. F. & Lin, P. 2008 Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method. J. Comput. Phys. 227, 33583382.Google Scholar
Ishii, M. & Zuber, N. 1979 Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J. 25, 843855.Google Scholar
Jenny, M., Dusek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201239.CrossRefGoogle Scholar
Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202228.Google Scholar
Katz, J. & Meneveau, C. 1996 Wake-induced relative motion of bubbles rising in line. Intl J. Multiphase Flow 22 (2), 239258.Google Scholar
Keh, H. J. & Tseng, Y. K. 1992 Slow motion of multiple droplets in arbitrary three-dimensional configurations. AIChE J. 38, 18811904.Google Scholar
Koch, D. L. 1993 Hydrodynamic diffusion in dilute sedimenting suspensions at moderate Reynolds numbers. Phys. Fluids A 5, 1141.Google Scholar
Kushch, V. I., Sangani, A. S., Spelt, P. D. M. & Koch, D. L. 2002 Finite Weber number motion of bubbles through a nearly inviscid liquid. J. Fluid Mech. 460, 241280.Google Scholar
Legendre, D. & Magnaudet, J. 1998 The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81126.Google Scholar
Legendre, D., Magnaudet, J. & Mougin, G. 2003 Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid. J. Fluid Mech. 497, 133166.Google Scholar
Loisy, A.2016 Direct numerical simulation of bubbly flows: coupling with scalar transport and turbulence. PhD thesis, Université Claude Bernard Lyon 1.Google Scholar
Loth, E. 2008 Quasi-steady shape and drag of deformable bubbles and drops. Intl J. Multiphase Flow 34, 523546.Google Scholar
Martinez-Mercado, J., Palacios-Morales, C. A. & Zenit, R. 2007 Measurement of pseudoturbulence intensity in monodispersed bubbly liquids for 10 < Re < 500. Phys. Fluids 19, 103302.Google Scholar
Mei, R., Klausner, J. F. & Lawrence, C. J. 1994 A note on the history force on a spherical bubble at finite Reynolds number. Phys. Fluids 6, 418420.Google Scholar
Meland, R., Gran, I. R., Olsen, R. & Munkejord, S. T. 2007 Reduction of parasitic currents in level-set calculations with a consistent discretization of the surface-tension force for the CSF model. In 16th Australasian Fluid Mechanics Conference (AFMC) (ed. Jacobs, P. et al. ), pp. 862865. The University of Queensland.Google Scholar
Merle, A., Legendre, D. & Magnaudet, J. 2005 Forces on a high-Reynolds-number spherical bubble in a turbulent flow. J. Fluid Mech. 532, 5362.Google Scholar
Moore, D. W. 1959 The rise of a gas bubble in a viscous liquid. J. Fluid Mech. 6, 113130.Google Scholar
Naso, A. & Prosperetti, A. 2010 The interaction between a solid particle and a turbulent flow. New J. Phys. 12, 033040.Google Scholar
Osher, S. & Sethian, J. A. 1988 Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 1249.Google Scholar
Phillips, R. J., Brady, J. F. & Bossis, G. 1988 Hydrodynamic transport properties of hardsphere dispersions. I. Suspensions of freely mobile particles. Phys. Fluids 31, 34623472.Google Scholar
Prosperetti, A. & Tryggvason, G. 2007 Computational Methods for Multiphase Flow. Cambridge University Press.Google Scholar
Ray, B. & Prosperetti, A. 2014 On skirted drops in an immiscible liquid. Chem. Engng Sci. 108, 213222.Google Scholar
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.Google Scholar
Richardson, J. F. & Zaki, W. N. 1954 Sedimentation and fluidisation: Part I. Trans. Inst. Chem. Engrs 32, 3553.Google Scholar
Roghair, I., Lau, Y. M., Deen, N. G., Slagter, H. M., Baltussen, M. W., Van Sint Annaland, M. & Kuipers, J. A. M. 2011 On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers. Chem. Engng Sci. 66, 32043211.Google Scholar
Russo, G. & Smereka, P. 2000 A remark on computing distance functions. J. Comput. Phys. 163, 5167.Google Scholar
Rybczynski, W. 1911 Uber die fortschreitende Bewegung einer flussigen Kugel in einem zahen Medium. Bull. Intl Acad. Sci. Cracovie A 1, 4046.Google Scholar
Ryskin, G. & Leal, L. G. 1984 Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid. J. Fluid Mech. 148, 1935.CrossRefGoogle Scholar
Sabelnikov, V., Ovsyannikov, A. Y. & Gorokhovski, M. 2014 Modified level set equation and its numerical assessment. J. Comput. Phys. 278, 130.Google Scholar
Salih, A. & Ghosh Moulic, S. 2009 Some numerical studies of interface advection properties of level set method. Sadhana 34, 271298.Google Scholar
Sangani, A. S. 1987 Sedimentation in ordered emulsions of drops at low Reynolds numbers. Z. Angew. Math. Phys. 38, 542556.Google Scholar
Sangani, A. S. & Acrivos, A. 1983 Creeping flow through cubic arrays of spherical bubbles. Intl J. Multiphase Flow 9, 181185.Google Scholar
Sankaranarayanan, K., Shan, X., Kevrekidis, I. G. & Sundaresan, S. 2002 Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method. J. Fluid Mech. 452, 6196.Google Scholar
Sankaranarayanan, K. & Sundaresan, S. 2002 Lift force in bubbly suspensions. Chem. Engng Sci. 57, 35213542.Google Scholar
Spelt, P. D. M. 2006 Shear flow past two-dimensional droplets pinned or moving on an adhering channel wall at moderate Reynolds numbers: a numerical study. J. Fluid Mech. 561, 439.Google Scholar
Spelt, P. D. M. & Sangani, A. S. 1998 Properties and averaged equations for flows of bubbly liquids. Appl. Sci. Res. 58, 337386.Google Scholar
Sussman, M., Smereka, P. & Osher, S. 1994 A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146159.Google Scholar
Sussman, M. & Uto, S. 1998 A computational study of the spreading of oil underneath a sheet of ice. UCLA Computational and Applied Mathematics Report 98.Google Scholar
Taylor, T. D. & Acrivos, A. 1964 On the deformation and drag of a falling viscous drop at low Reynolds number. J. Fluid Mech. 18, 466476.Google Scholar
Theodoropoulos, C., Sankaranarayanan, K., Sundaresan, S. & Kevrekidis, I. G. 2004 Coarse bifurcation studies of bubble flow lattice Boltzmann simulations. Chem. Engng Sci. 59, 23572362.Google Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Veldhuis, C. H. J. & Biesheuvel, A. 2007 An experimental study of the regimes of motion of spheres falling or ascending freely in a Newtonian fluid. Intl J. Multiphase Flow 33, 10741087.Google Scholar
Wacholder, E. 1973 Sedimentation in a dilute emulsion. Chem. Engng Sci. 28, 14471453.Google Scholar
Yin, X. & Koch, D. L. 2008 Lattice-Boltzmann simulation of finite Reynolds number buoyancy-driven bubbly flows in periodic and wall-bounded domains. Phys. Fluids 20, 103304.Google Scholar
Yuan, H. & Prosperetti, A. 1994 On the in-line motion of two spherical bubbles in a viscous fluid. J. Fluid Mech. 278, 325.Google Scholar
Zenit, R., Koch, D. L. & Sangani, A. S. 2001 Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429, 307342.Google Scholar

Loisy et al. supplementary movie

Top view of the bubble motion at a volume fraction of 3.8 % for case E1 (8 bubbles in the cell).

Download Loisy et al. supplementary movie(Video)
Video 17.6 MB

Loisy et al. supplementary movie

Top view of the bubble motion at a volume fraction of 0.24 % for case E1 (8 bubbles in the cell).

Download Loisy et al. supplementary movie(Video)
Video 442.7 KB