Hostname: page-component-55f67697df-jr75m Total loading time: 0 Render date: 2025-05-11T09:22:49.783Z Has data issue: false hasContentIssue false

Bridging the Rossby number gap in rapidly rotating thermal convection

Published online by Cambridge University Press:  09 May 2025

Adrian van Kan*
Affiliation:
Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
Keith Julien
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Benjamin Miquel
Affiliation:
CNRS, École Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Laboratoire de Mécanique des Fluides et d’Acoustique, UMR 5509, F-69134 Écully, France
Edgar Knobloch
Affiliation:
Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
*
Corresponding author: Adrian van Kan, [email protected]

Abstract

Geophysical and astrophysical fluid flows are typically driven by buoyancy and strongly constrained at large scales by planetary rotation. Rapidly rotating Rayleigh–Bénard convection (RRRBC) provides a paradigm for experiments and direct numerical simulations (DNS) of such flows, but the accessible parameter space remains restricted to moderately fast rotation rates (Ekman numbers ${ {Ek}} \gtrsim 10^{-8}$), while realistic ${Ek}$ for geo- and astrophysical applications are orders of magnitude smaller. On the other hand, previously derived reduced equations of motion describing the leading-order behaviour in the limit of very rapid rotation ($ {Ek}\to 0$) cannot capture finite rotation effects, and the physically most relevant part of parameter space with small but finite ${Ek}$ has remained elusive. Here, we employ the rescaled rapidly rotating incompressible Navier–Stokes equations (RRRiNSE) – a reformulation of the Navier–Stokes–Boussinesq equations informed by the scalings valid for ${Ek}\to 0$, recently introduced by Julien et al. (2024) – to provide full DNS of RRRBC at unprecedented rotation strengths down to $ {Ek}=10^{-15}$ and below, revealing the disappearance of cyclone–anticyclone asymmetry at previously unattainable Ekman numbers (${Ek}\approx 10^{-9}$). We also identify an overshoot in the heat transport as ${Ek}$ is varied at fixed $\widetilde { {Ra}} \equiv {Ra}{Ek}^{4/3}$, where $Ra$ is the Rayleigh number, associated with dissipation due to ageostrophic motions in the boundary layers. The simulations validate theoretical predictions based on thermal boundary layer theory for RRRBC and show that the solutions of RRRiNSE agree with the reduced equations at very small ${Ek}$. These results represent a first foray into the vast, largely unexplored parameter space of very rapidly rotating convection rendered accessible by RRRiNSE.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Deceased on 14th April 2024.

References

Alexakis, A. 2023 Quasi-two-dimensional turbulence. Rev. Mod. Plasma Phys. 7 (1), 31.CrossRefGoogle Scholar
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767, 1101.CrossRefGoogle Scholar
Ascher, U.M., Ruuth, S.J. & Spiteri, R.J. 1997 Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Maths 25 (2-3), 151167. Special Issue on Time Integration.CrossRefGoogle Scholar
Aurnou, J.M., Calkins, M.A., Cheng, J.S., Julien, K., King, E.M., Nieves, D., Soderlund, K.M. & Stellmach, S. 2015 Rotating convective turbulence in Earth and planetary cores. Phys. Earth Planet. Inter. 246, 5271.CrossRefGoogle Scholar
Barker, A.J., Dempsey, A.M. & Lithwick, Y. 2014 Theory and simulations of rotating convection. Astrophys. J. 791 (1), 13.CrossRefGoogle Scholar
Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid. Mech. 44 (1), 427451.CrossRefGoogle Scholar
Boubnov, B.M. & Golitsyn, G.S. 1986 Experimental study of convective structures in rotating fluids. J. Fluid Mech. 167, 503531.CrossRefGoogle Scholar
Boubnov, B.M. & Golitsyn, G.S. 2012 Convection in Rotating Fluids. Springer Science & Business Media.Google Scholar
Bouillaut, V., Miquel, B., Julien, K., Aumaître, S. & Gallet, B. 2021 Experimental observation of the geostrophic turbulence regime of rapidly rotating convection. Proc. Natl Acad. Sci. USA 118 (44), e2105015118.CrossRefGoogle ScholarPubMed
Cai, T. 2020 Penetrative convection for rotating Boussinesq flow in tilted $f$ -planes. Astrophys. J. 898, 22.CrossRefGoogle Scholar
Chandrasekhar, S. 1953 The instability of a layer of fluid heated below and subject to Coriolis forces. Proc. R. Soc. Lond. A 217, 306327.Google Scholar
Cheng, J.S., Aurnou, J.M., Julien, K. & Kunnen, R.P.J. 2018 A heuristic framework for next-generation models of geostrophic convective turbulence. Geophys. Astrophys. Fluid Dyn. 112 (4), 277300.CrossRefGoogle Scholar
Cheng, J.S., Madonia, M., Aguirre Guzmán, A.J. & Kunnen, R.P.J. 2020 Laboratory exploration of heat transfer regimes in rapidly rotating turbulent convection. Phys. Rev. Fluids 5 (11), 113501.CrossRefGoogle Scholar
Cheon, W.G. & Gordon, A.L. 2019 Open-ocean polynyas and deep convection in the Southern Ocean. Sci. Rep. 9 (1), 6935.CrossRefGoogle ScholarPubMed
Clenshaw, C.W. 1957 The numerical solution of linear differential equations in Chebyshev series. Math. Proc. Camb. Philos. Soc. 53 (1), 134149.CrossRefGoogle Scholar
Cooper, R.G., Bushby, P.J. & Guervilly, C. 2020 Subcritical dynamos in rapidly rotating planar convection. Phys. Rev. Fluids 5 (11), 113702.CrossRefGoogle Scholar
Currie, L.K., Barker, A.J., Lithwick, Y. & Browning, M.K. 2020 Convection with misaligned gravity and rotation: simulations and rotating mixing length theory. Mon. Not. R. Astron. Soc. 493 (4), 52335256.CrossRefGoogle Scholar
Dauxois, T. et al. 2021 Confronting Grand Challenges in environmental fluid mechanics. Phys. Rev. Fluids 6 (2), 020501.CrossRefGoogle Scholar
Ecke, R.E. & Shishkina, O. 2023 Turbulent rotating Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 55 (1), 603638.CrossRefGoogle Scholar
Emanuel, K.A. 1994 Atmospheric Convection. Oxford University Press.CrossRefGoogle Scholar
Fan, Y. 2021 Magnetic fields in the solar convection zone. Living Rev. Sol. Phys. 18 (1), 5.CrossRefGoogle Scholar
Favier, B., Silvers, L.J. & Proctor, M.R.E. 2014 Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Phys. Fluids 26 (9), 096605.CrossRefGoogle Scholar
Gallet, B., Campagne, A., Cortet, P.-P. & Moisy, F. 2014 Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment. Phys. Fluids 26 (3), 035108.CrossRefGoogle Scholar
Garaud, P. & Garaud, J.-D. 2008 Dynamics of the solar tachocline - II. The stratified case. Mon. Not. R. Astron. Soc. 391 (3), 12391258.CrossRefGoogle Scholar
Gastine, T. & Aurnou, J.M. 2023 Latitudinal regionalization of rotating spherical shell convection. J. Fluid Mech. 954, R1.CrossRefGoogle Scholar
Grasset, O., et al. 2013 JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 121.CrossRefGoogle Scholar
Greengard, L. 1991 Spectral integration and two-point boundary value problems. SIAM J. Numer. Anal. 28 (4), 10711080.CrossRefGoogle Scholar
Guervilly, C., Cardin, P. & Schaeffer, N. 2019 Turbulent convective length scale in planetary cores. Nature 570 (7761), 368371.CrossRefGoogle ScholarPubMed
Guervilly, C. & Hughes, D.W. 2017 Jets and large-scale vortices in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 2 (11), 113503.CrossRefGoogle Scholar
Guervilly, C., Hughes, D.W. & Jones, C.A. 2014 Large-scale vortices in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 758, 407435.CrossRefGoogle Scholar
Hadjerci, G., Bouillaut, V., Miquel, B. & Gallet, B. 2024 Rapidly rotating radiatively driven convection: experimental and numerical validation of the ‘geostrophic turbulence’ scaling predictions. J. Fluid Mech. 998, A9.CrossRefGoogle Scholar
Hart, J.E., Kittelman, S. & Ohlsen, D.R. 2002 Mean flow precession and temperature probability density functions in turbulent rotating convection. Phys. Fluids 14 (3), 955962.CrossRefGoogle Scholar
Hathaway, D.H. & Somerville, R.C.J. 1983 Three-dimensional simulations of convection in layers with tilted rotation vectors. J. Fluid Mech. 126, 7589.CrossRefGoogle Scholar
Hawkins, E.K., Cheng, J.S., Abbate, J.A., Pilegard, T., Stellmach, S., Julien, K. & Aurnou, J.M. 2023 Laboratory models of planetary core-style convective turbulence. Fluids 8 (4), 106.CrossRefGoogle Scholar
He, J., Favier, B., Rieutord, M. & Le Dizès, S. 2022 Internal shear layers in librating spherical shells: the case of periodic characteristic paths. J. Fluid Mech. 939, A3.CrossRefGoogle Scholar
Howell, S.M. & Pappalardo, R.T. 2020 NASA’s Europa Clipper–a mission to a potentially habitable ocean world. Nat. Commun. 11 (1), 1311.CrossRefGoogle ScholarPubMed
Jones, C.A. 2011 Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech. 43 (1), 583614.CrossRefGoogle Scholar
Julien, K., Aurnou, J.M., Calkins, M.A., Knobloch, E., Marti, P., Stellmach, S. & Vasil, G.M. 2016 A nonlinear model for rotationally constrained convection with Ekman pumping. J. Fluid Mech. 798, 5087.CrossRefGoogle Scholar
Julien, K., Ellison, A., Miquel, B., Calkins, M. & Knobloch, E. 2025 Quasi-geostrophic convection on the tilted $f$-plane . To be submitted to J. Fluid Mech.Google Scholar
Julien, K., van Kan, A., Miquel, B., Knobloch, E. & Vasil, G. 2024 Rescaled equations of fluid motion for well-conditioned direct numerical simulations of rapidly rotating convection. arXiv: 2410.02702.Google Scholar
Julien, K. & Knobloch, E. 1998 Strongly nonlinear convection cells in a rapidly rotating fluid layer: the tilted $f$ -plane. J. Fluid Mech. 360, 141178.CrossRefGoogle Scholar
Julien, K. & Knobloch, E. 2007 Reduced models for fluid flows with strong constraints. J. Math. Phys. 48 (6), 065405.CrossRefGoogle Scholar
Julien, K., Knobloch, E., Milliff, R. & Werne, J. 2006 Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows. J. Fluid Mech. 555, 233274.CrossRefGoogle Scholar
Julien, K., Knobloch, E. & Plumley, M. 2018 Impact of domain anisotropy on the inverse cascade in geostrophic turbulent convection. J. Fluid Mech. 837, R4.CrossRefGoogle Scholar
Julien, K., Knobloch, E., Rubio, A.M. & Vasil, G.M. 2012 a Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett. 109 (25), 254503.CrossRefGoogle ScholarPubMed
Julien, K., Knobloch, E. & Werne, J. 1998 A new class of equations for rotationally constrained flows. Theor. Comput. Fluid Dyn. 11 (3-4), 251261.CrossRefGoogle Scholar
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996 Rapidly rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 322, 243273.CrossRefGoogle Scholar
Julien, K., Rubio, A.M., Grooms, I. & Knobloch, E. 2012 b Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106 (4-5), 392428.CrossRefGoogle Scholar
Julien, K. & Watson, M. 2009 Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods. J. Comput. Phys. 228 (5), 14801503.CrossRefGoogle Scholar
van Kan, A. 2024 Phase transitions in anisotropic turbulence. Chaos 34 (12), 122103.CrossRefGoogle ScholarPubMed
King, E.M., Soderlund, K.M., Christensen, U.R., Wicht, J. & Aurnou, J.M. 2010 Convective heat transfer in planetary dynamo models. Geochem. Geophys. Geosyst. 11 (6), Q06016.CrossRefGoogle Scholar
King, E.M., Stellmach, S. & Aurnou, J.M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691, 568582.CrossRefGoogle Scholar
Knobloch, E. 1998 Rotating convection: recent developments. Intl J. Engng Sci. 36 (12-14), 14211450.CrossRefGoogle Scholar
Kolhey, P., Stellmach, S. & Heyner, D. 2022 Influence of boundary conditions on rapidly rotating convection and its dynamo action in a plane fluid layer. Phys. Rev. Fluids 7 (4), 043502.CrossRefGoogle Scholar
Kunnen, R.P.J., Ostilla-Mónico, R., van der Poel, E.P., Verzicco, R. & Lohse, D. 2016 Transition to geostrophic convection: the role of the boundary conditions. J. Fluid Mech. 799, 413432.CrossRefGoogle Scholar
Lesur, G. & Ogilvie, G.I. 2010 On the angular momentum transport due to vertical convection in accretion discs. Mon. Not. R. Astron. Soc. 404 (1), L64L68.CrossRefGoogle Scholar
Lin, Y. & Jackson, A. 2021 Large-scale vortices and zonal flows in spherical rotating convection. J. Fluid Mech. 912, A46.CrossRefGoogle Scholar
Lu, H.-Y., Ding, G.-Y., Shi, J.-Q., Xia, K.-Q. & Zhong, J.-Q. 2021 Heat-transport scaling and transition in geostrophic rotating convection with varying aspect ratio. Phys. Rev. Fluids 6 (7), L071501.CrossRefGoogle Scholar
Maffei, S., Krouss, M.J., Julien, K. & Calkins, M.A. 2021 On the inverse cascade and flow speed scaling behaviour in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 913, A18.CrossRefGoogle Scholar
Majumder, D., Sreenivasan, B. & Maurya, G. 2024 Self-similarity of the dipole-multipole transition in rapidly rotating dynamos. J. Fluid Mech. 980, A30.CrossRefGoogle Scholar
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37 (1), 164.CrossRefGoogle Scholar
Mason, S.J., Guervilly, C. & Sarson, G.R. 2022 Magnetoconvection in a rotating spherical shell in the presence of a uniform axial magnetic field. Geophys. Astrophys. Fluid Dyn. 116 (5-6), 458498.CrossRefGoogle Scholar
Miesch, M.S. 2000 The coupling of solar convection and rotation. Sol. Phys. 192 (1/2), 5989.CrossRefGoogle Scholar
Miquel, B. 2021 Coral: a parallel spectral solver for fluid dynamics and partial differential equations. J. Open Source Softw. 6 (65), 2978.CrossRefGoogle Scholar
Miquel, B., Xie, J.-H., Featherstone, N., Julien, K. & Knobloch, E. 2018 Equatorially trapped convection in a rapidly rotating shallow shell. Phys. Rev. Fluids 3 (5), 053801.CrossRefGoogle Scholar
Mitri, G. & Showman, A.P. 2008 Thermal convection in ice-I shells of Titan and Enceladus. Icarus 193 (2), 387396.CrossRefGoogle Scholar
Nakagawa, Y. & Frenzen, P. 1955 A theoretical and experimental study of cellular convection in rotating fluids. Tellus 7, 221.Google Scholar
National Academies of Sciences, Engineering, and Medicine 2023 Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032. The National Academies Press.Google Scholar
Nimmo, F. & Pappalardo, R.T. 2016 Ocean worlds in the outer solar system. J. Geophys. Res. E Planets 121 (8), 13781399.CrossRefGoogle Scholar
Novi, L., von Hardenberg, J., Hughes, D.W., Provenzale, A. & Spiegel, E.A. 2019 Rapidly rotating Rayleigh–Bénard convection with a tilted axis. Phys. Rev. E 99 (5), 053116.CrossRefGoogle ScholarPubMed
Oliver, T.G., Jacobi, A.S., Julien, K. & Calkins, M.A. 2023 Small scale quasigeostrophic convective turbulence at large Rayleigh number. Phys. Rev. Fluids 8 (9), 093502.CrossRefGoogle Scholar
Pappalardo, R.T. et al. 1998 Geological evidence for solid-state convection in Europa’s ice shell. Nature 391 (6665), 365368.CrossRefGoogle ScholarPubMed
Pothérat, A. & Horn, S. 2024 Seven decades of exploring planetary interiors with rotating convection experiments. Comptes Rendus. Physique 25 (S3), 155.CrossRefGoogle Scholar
Proudman, J. 1916 On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. Lond. A 92, 408424.Google Scholar
Rajaei, H., Kunnen, R.P.J. & Clercx, H.J.H. 2017 Exploring the geostrophic regime of rapidly rotating convection with experiments. Phys. Fluids 29 (4), 045105.CrossRefGoogle Scholar
Rossby, H.T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36, 309335.CrossRefGoogle Scholar
Roullet, G. & Klein, P. 2010 Cyclone-anticyclone asymmetry in geophysical turbulence. Phys. Rev. Lett. 104 (21), 218501.CrossRefGoogle ScholarPubMed
Rubio, A.M., Julien, K., Knobloch, E. & Weiss, J.B. 2014 Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112 (14), 144501.CrossRefGoogle ScholarPubMed
Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A. 2017 Turbulent geodynamo simulations: a leap towards Earth’s core. Geophys. J. Intl 211 (1), 129.CrossRefGoogle Scholar
Schubert, G. & Soderlund, K.M. 2011 Planetary magnetic fields: observations and models. Phys. Earth Planet. Inter. 187, 92108.CrossRefGoogle Scholar
Severin, T., Conan, P., Durrieu de Madron, X., Houpert, L., Oliver, M.J., Oriol, L., Caparros, J., Ghiglione, J.F. & Pujo-Pay, M. 2014 Impact of open-ocean convection on nutrients, phytoplankton biomass and activity. Deep Sea Res. Part I: Oceanogr. Res. Paper 94, 6271.CrossRefGoogle Scholar
Shew, W.L. & Lathrop, D.P. 2005 Liquid sodium model of geophysical core convection. Phys. Earth Planet. Inter. 153, 136149.CrossRefGoogle Scholar
Siegelman, L., et al. 2022 Moist convection drives an upscale energy transfer at Jovian high latitudes. Nat. Phys. 18 (3), 357361.CrossRefGoogle Scholar
Soderlund, K.M. 2019 Ocean dynamics of outer solar system satellites. Geophys. Res. Lett. 46 (15), 87008710.CrossRefGoogle Scholar
Soderlund, K.M., Rovira-Navarro, M., Le Bars, M., Schmidt, B.E. & Gerkema, T. 2024 The physical oceanography of ice-covered moons. Annu. Rev. Mar. Sci. 16 (1), 2553.CrossRefGoogle ScholarPubMed
Song, J., Shishkina, O. & Zhu, X. 2024 a Scaling regimes in rapidly rotating thermal convection at extreme Rayleigh numbers. J. Fluid Mech. 984, A45.CrossRefGoogle Scholar
Song, J., Shishkina, O. & Zhu, X. 2024 b Direct numerical simulations of rapidly rotating Rayleigh–Bénard convection with Rayleigh number up to $5\times 10^{13}$ . J. Fluid Mech. 989, A3.CrossRefGoogle Scholar
Sprague, M., Julien, K., Knobloch, E. & Werne, J. 2006 Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551, 141174.CrossRefGoogle Scholar
Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J.S., Ribeiro, A., King, E.M. & Aurnou, J.M. 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113 (25), 254501.CrossRefGoogle ScholarPubMed
Stevens, R.J.A.M., Clercx, H.J.H. & Lohse, D. 2013 Heat transport and flow structure in rotating Rayleigh–Bénard convection. Eur. J. Mech. B Fluids 40, 4149.CrossRefGoogle Scholar
Veronis, G. 1959 Cellular convection with finite amplitude in a rotating fluid. J. Fluid Mech. 5, 401435.CrossRefGoogle Scholar
Vorobieff, P. & Ecke, R.E. 2002 Turbulent rotating convection: an experimental study. J. Fluid Mech. 458, 191218.CrossRefGoogle Scholar
Zhong, F., Ecke, R. & Steinberg, V. 1991 Asymmetric modes and the transition to vortex structures in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 67 (18), 24732476.CrossRefGoogle ScholarPubMed
Supplementary material: File

van Kan et al. supplementary material movie 1

Horizontal slice of vertical vorticity taken at top of the boundary layer, near the bottom boundary, at ${\rm Ek}=10^{-15}$ , $\widetilde{Ra}=Ra Ek^{4/3} = 120$ and ${\rm \sigma}=1$ shows symmetry between positive (cyclonic, red) and negative (anticyclonic, blue) vorticity regions.
Download van Kan et al. supplementary material movie 1(File)
File 7.4 MB
Supplementary material: File

van Kan et al. supplementary material movie 2

Horizontal slice of the temperature fluctuation at top of the boundary layer, near the bottom boundary, at ${\rm Ek}=10^{-15}$ , $\widetilde{Ra}=Ra Ek^{4/3} = 120$ and ${\rm \sigma}=1$ shows symmetry between warm (red) and cold (blue) regions.
Download van Kan et al. supplementary material movie 2(File)
File 8.6 MB
Supplementary material: File

van Kan et al. supplementary material movie 3

Horizontal slice of the vertical velocity taken at top of the boundary layer, near the bottom boundary, at ${\rm Ek}=10^{-15}$ , $\widetilde{Ra}=Ra Ek^{4/3} = 120$ and ${\rm \sigma}=1$ shows symmetry between positive (upward, red) and negative (downward, blue) fluid motions.
Download van Kan et al. supplementary material movie 3(File)
File 32.7 MB
Supplementary material: File

van Kan et al. supplementary material movie 4

Horizontal slice of vertical vorticity taken at top of the boundary layer, near the bottom boundary, at ${\rm Ek}=10^{-8}$ , $\widetilde{Ra}=Ra Ek^{4/3} = 120$ and ${\rm \sigma}=1$ shows onset of asymmetry between positive (cyclonic, red) and negative (anticyclonic, blue) vorticity regions, with a large-scale cyclone and short-lived, transient anticyclones.
Download van Kan et al. supplementary material movie 4(File)
File 26.5 MB
Supplementary material: File

van Kan et al. supplementary material movie 5

Horizontal slice of the temperature fluctuation at top of the boundary layer, near the bottom boundary, at ${\rm Ek}=10^{-15}$ , $\widetilde{Ra}=Ra Ek^{4/3} = 120$ and ${\rm \sigma}=1$ shows onset of asymmetry between warm (red) and cold (blue) regions, with pronounced cold regions corresponding to anticyclonic vortices.
Download van Kan et al. supplementary material movie 5(File)
File 16.4 MB
Supplementary material: File

van Kan et al. supplementary material movie 6

Horizontal slice of the temperature fluctuation at top of the boundary layer, near the bottom boundary, at ${\rm Ek}=10^{-15}$ , $\widetilde{Ra}=Ra Ek^{4/3} = 120$ and ${\rm \sigma}=1$ shows onset of asymmetry in vertical fluid motions, with a clear trace of the strong anticyclones visible in vorticity and temperature.
Download van Kan et al. supplementary material movie 6(File)
File 23.6 MB