Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T09:38:24.189Z Has data issue: false hasContentIssue false

Breakup time and morphology of drops and bubbles in a high-Reynolds-number flow

Published online by Cambridge University Press:  01 February 2006

J. RODRÍGUEZ-RODRÍGUEZ
Affiliation:
Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, [email protected]
J. M. GORDILLO
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingeniería Energética y Mecánica de Fluidos, Universidad de Sevilla. Avda. de los Descubrimientos s/n, 41092, Sevilla, [email protected]
C. MARTÍNEZ-BAZÁN
Affiliation:
Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, [email protected] Present address: Área de Mecánica de Fluidos. Departamento de Ingeniería Mecánica y Minera, Universidad de Jaén, Campus de las Lagunillas, 23071, Jaén, Spain; [email protected]

Abstract

The breakup process of a drop or a bubble immersed in a straining flow at high Reynolds numbers, is studied numerically with the aim at comparing the breakup frequencies obtained with those measured in real flows. We assume that both the inner and the outer velocity fields are axisymmetric and irrotational. Under these assumptions the time evolution of the drop's interface is computed with a boundary integral method for a wide range of the inner-to-outer density ratios, $\Lambda$. Despite the simplicity of the model, it qualitatively displays some of the features of the turbulent breakup of drops and bubbles observed experimentally. Furthermore, when $\Lambda \sim O(1)$, the slender geometry of the droplets observed in the numerical simulations suggests the use of a simplified theoretical analysis that reproduces accurately the time evolution of the drop radius obtained numerically.

Type
Papers
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)