Article contents
Breakup of a conducting drop in a uniform electric field
Published online by Cambridge University Press: 11 August 2014
Abstract
A conducting drop suspended in a viscous dielectric and subjected to a uniform DC electric field deforms to a steady-state shape when the electric stress and the viscous stress balance. Beyond a critical electric capillary number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Ca}$, which is the ratio of the electric to the capillary stress, a drop undergoes breakup. Although the steady-state deformation is independent of the viscosity ratio $\lambda $ of the drop and the medium phase, the breakup itself is dependent upon $\lambda $ and $\mathit{Ca}$. We perform a detailed experimental and numerical analysis of the axisymmetric shape prior to breakup (ASPB), which explains that there are three different kinds of ASPB modes: the formation of lobes, pointed ends and non-pointed ends. The axisymmetric shapes undergo transformation into the non-axisymmetric shape at breakup (NASB) before disintegrating. It is found that the lobes, pointed ends and non-pointed ends observed in ASPB give way to NASB modes of charged lobes disintegration, regular jets (which can undergo a whipping instability) and open jets, respectively. A detailed experimental and numerical analysis of the ASPB modes is conducted that explains the origin of the experimentally observed NASB modes. Several interesting features are reported for each of the three axisymmetric and non-axisymmetric modes when a drop undergoes breakup.
- Type
- Papers
- Information
- Copyright
- © 2014 Cambridge University Press
References
Karyappa et al. supplementary movie
Breakup of a water drop suspended in castor oil (figure 10): (a, Ca, λ) = (112 μm, 0.40, 0.00126).
Karyappa et al. supplementary movie
Regular jet breakup mode of a conducting drop for high viscosity ratio (figure 18(a)): (a, Ca, λ) = (190 μm , 0.30, 2.0).
- 101
- Cited by