Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T17:35:09.782Z Has data issue: false hasContentIssue false

The breaking of transient inertio-gravity waves in a shear flow using the Gaussian beam approximation

Published online by Cambridge University Press:  27 October 2014

C. Rodas
Affiliation:
Physics Department, FACENA, Universidad Nacional del Nordeste, Corrientes, Argentina
M. Pulido*
Affiliation:
Physics Department, FACENA, Universidad Nacional del Nordeste, Corrientes, Argentina IMIT, UMI-IFAECI/CNRS, CONICET, Argentina
*
Email address for correspondence: [email protected]

Abstract

The propagation of transient inertio-gravity waves in a shear flow is examined using the Gaussian beam formulation. This formulation assumes Gaussian wavepackets in the spectral space and uses a second-order Taylor expansion of the phase of the wave field. In this sense, the Gaussian beam formulation is also an asymptotic approximation like spatial ray tracing; however, the first one is free of the singularities found in spatial ray tracing at caustics. Therefore, the Gaussian beam formulation permits the examination of the evolution of transient inertio-gravity wavepackets from the initial time up to the destabilization of the flow close to the critical levels. We show that the transience favours the development of the dynamical instability relative to the convective instability. In particular, there is a well-defined threshold for which small initial amplitude transient inertio-gravity waves never reach the convective instability criterion. This threshold does not exist for steady-state inertio-gravity waves for which the wave amplitude increases indefinitely towards the critical level. The Gaussian beam formulation is shown to be a powerful tool to treat analytically several aspects of inertio-gravity waves in simple shear flows. In more realistic shear flows, its numerical implementation is readily available and the required numerical calculations have a low computational cost.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achatz, U. 2007 The primary nonlinear dynamics of modal and nonmodal perturbations of monochromatic inertia–gravity waves. J. Atmos. Sci. 64, 7495.CrossRefGoogle Scholar
Achatz, U. & Schmitz, G. 2006 Shear and static instability of inertia–gravity wave packets: short-term modal and nonmodal growth. J. Atmos. Sci. 63, 397413.CrossRefGoogle Scholar
Alexander, M. J. & Dunkerton, T. J. 1999 A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci. 56, 41674182.2.0.CO;2>CrossRefGoogle Scholar
Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. & Watanabe, S. 2010 Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q. J. R. Meteorol. Soc. 136, 11031124.CrossRefGoogle Scholar
Alexander, M. J., Gille, J., Cavanaugh, C., Coffey, M., Craig, C., Eden, T., Francis, G., Halvorson, C., Hannigan, J., Khosravi, R., Kinnison, D., Lee, H., Massie, S., Nardi, B., Barnett, J., Hepplewhite, C., Lambert, A. & Dean, V. 2008 Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J. Geophys. Res. 113, D15S18.Google Scholar
Alexander, M. J., Tsuda, T. & Vincent, R. A. 2002 Latitudinal variations observed in gravity waves with short vertical wavelengths. J. Atmos. Sci. 59, 13941404.2.0.CO;2>CrossRefGoogle Scholar
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
Booker, J. & Bretherton, F. 1967 The critical layer for internal gravity waves in a shear flow. J. Fluid Mech. 27, 513539.CrossRefGoogle Scholar
Broad, A. 1999 Do orographic gravity waves break in flows with uniform wind direction turning with height? Q. J. R. Meteorol. Soc. 125, 16951714.CrossRefGoogle Scholar
Broutman, D. 1984 The focusing of short internal waves by an inertial wave. Geophys. Astrophys. Fluid Dyn. 30, 199225.CrossRefGoogle Scholar
Broutman, D. 1986 On internal wave caustics. J. Phys. Oceanogr. 16, 16251635.2.0.CO;2>CrossRefGoogle Scholar
Broutman, D., Rottman, J. & Eckermann, S. 2001 A hybrid method for analysing wave propagation from a localized source, with application to mountain waves. Q. J. R. Meteorol. Soc. 127, 129146.CrossRefGoogle Scholar
Broutman, D., Rottman, J. & Eckermann, S. 2002 Maslov’s method for stationary hydrostatic mountain waves. Q. J. R. Meteorol. Soc. 128, 11591172.CrossRefGoogle Scholar
Cadet, D. & Teitelbaum, H. 1979 Observational evidence of internal inertio-gravity waves in the tropical stratosphere. J. Atmos. Sci. 36, 892907.2.0.CO;2>CrossRefGoogle Scholar
Cerveny, V. 1983 Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method. Geophys. J. R. Astron. Soc. 73, 389426.CrossRefGoogle Scholar
Cerveny, V., Popov, M. M. & Psencik, I. 1982 Computation of wavefields in inhomogeneous media – Gaussian beam approach. Geophys. J. Intl 70, 109128.CrossRefGoogle Scholar
Dunkerton, T. J. 1984 Inertia–gravity waves in the stratosphere. J. Atmos. Sci. 41, 33963404.2.0.CO;2>CrossRefGoogle Scholar
Dunkerton, T. J. 1997 Shear instability of inertial–gravity waves. J. Atmos. Sci. 54, 16281641.2.0.CO;2>CrossRefGoogle Scholar
Dunkerton, T. J. & Butchart, N. 1984 Propagation and selective transmission of internal gravity waves in a sudden warming. J. Atmos. Sci. 41, 14431460.2.0.CO;2>CrossRefGoogle Scholar
Eckermann, S. D. & Marks, C. J. 1997 GROGRAT: a new model of the global propagation and dissipation of atmospheric gravity waves. Adv. Space Res. 20, 12531256.CrossRefGoogle Scholar
Fritts, D. C. & Alexander, M. J. 2003 Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41, 1003.CrossRefGoogle Scholar
Fritts, D. C. & Rastogi, P. K. 1985 Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: theory and observations. Radio Sci. 20, 12471277.CrossRefGoogle Scholar
Fritts, D. C., Vadas, S. H., Wan, K. & Werne, J. A. 2006 Mean and variable forcing of the middle atmosphere by gravity waves. J. Atmos. Sol.-Terr. Phys. 68 (3–5), 247265.CrossRefGoogle Scholar
Fritts, D. & Yuan, L. 1989 Stability analysis of inertio-gravity wave structure in the middle atmosphere. J. Atmos. Sci. 46, 17381745.2.0.CO;2>CrossRefGoogle Scholar
Gill, A. E. 1982 Atmosphere–Ocean Dynamics. Academic Press.Google Scholar
Grimshaw, R. 1975 Internal gravity waves: critical layer absorption in a rotating fluid. J. Fluid Mech. 70, 287304.CrossRefGoogle Scholar
Hagedorn, G. A. 1984 A particle limit for the wave equation with a variable wave speed. Commun. Pure Appl. Maths 37, 91100.CrossRefGoogle Scholar
Hasha, A., Bühler, O. & Scinocca, J. F. 2008 Gravity-wave refraction by three-dimensionally varying winds and the global transport of angular momentum. J. Atmos. Sci. 65, 28922906.CrossRefGoogle Scholar
Hayes, W. D. 1970 Kinematic wave theory. Proc. R. Soc. Lond. A 320, 209226.Google Scholar
Hertzog, A., Vidal, F., Mechoso, C. R., Basdevant, C. & Coquerez, P. 2002 Quasi-Lagrangian measurements in the lower stratosphere reveal an energy peak associated with near-inertial waves. Geophys. Res. Lett. 29 (8), 1229.CrossRefGoogle Scholar
Heyman, E. & Felsen, L. B. 2001 Gaussian beam and pulsed beam dynamics: complex source and spectrum formulations within and beyond paraxial asymptotics. J. Opt. Soc. Am. A 18, 15881611.CrossRefGoogle ScholarPubMed
Hines, C. O. 1997 Doppler spread parametrization of gravity-wave momentum deposition in the middle atmosphere. Part 1: basic formulation. J. Atmos. Sol.-Terr. Phys. 59, 371386.CrossRefGoogle Scholar
Hodges, R. R. 1967 Generation of turbulence in the upper atmosphere by internal gravity waves. J. Geophys. Res. 72, 34553458.CrossRefGoogle Scholar
Howard, L. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 10, 509512.CrossRefGoogle Scholar
Jones, W. 1967 Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech. 30, 439448.CrossRefGoogle Scholar
Kravtsov, Y. A. & Berczynski, P. 2007 Gaussian beams in inhomogeneous media: a review. Stud. Geophys. Geod. 51 (1), 136.CrossRefGoogle Scholar
Lane, T., Reeder, M. J. & Clark, T. 2001 Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci. 58, 12491274.2.0.CO;2>CrossRefGoogle Scholar
Lelong, M. P. & Dunkerton, T. J. 1998a Inertia–gravity wave breaking in three dimensions. Part I: convectively stable waves. J. Atmos. Sci. 55, 24732488.2.0.CO;2>CrossRefGoogle Scholar
Lelong, M. P. & Dunkerton, T. J. 1998b Inertia–gravity wave breaking in three dimensions. Part II: convectively unstable waves. J. Atmos. Sci. 55, 24892501.2.0.CO;2>CrossRefGoogle Scholar
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
Lindzen, R. S. 1981 Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 86, 97079714.CrossRefGoogle Scholar
Marks, C. & Eckermann, S. 1995 A three-dimensional nonhydrostatic ray-tracing model for gravity waves: formulation and preliminary results for the middle atmosphere. J. Atmos. Sci. 52, 19591984.2.0.CO;2>CrossRefGoogle Scholar
Miles, J. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496508.CrossRefGoogle Scholar
Ostrovsky, L. A. & Potapov, A. I. 1999 Modulated Waves. Theory and Applications. Johns Hopkins University Press.CrossRefGoogle Scholar
O’Sullivan, D. & Dunkerton, T. J. 1995 Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci. 52, 36953716.2.0.CO;2>CrossRefGoogle Scholar
Press, W., Flannery, B., Teukolsky, S. & Vetterling, W. 1992 Numerical Recipes in Fortran. Cambridge University Press.Google Scholar
Pulido, M. 2005 On the Doppler shifting in an atmospheric gravity wave spectrum. Q. J. R. Meteorol. Soc. 131, 12151232.CrossRefGoogle Scholar
Pulido, M. & Rodas, C. 2008 Do transient gravity waves in a shear flow break? Q. J. R. Meteorol. Soc. 134, 10831094.CrossRefGoogle Scholar
Pulido, M. & Rodas, C. 2011 A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation. J. Atmos. Sci. 68, 4660.CrossRefGoogle Scholar
Pulido, M., Rodas, C., Dechat, D. & Lucini, M. 2013 High gravity wave activity observed in Patagonia, Southern America: generation by a cyclone passage over Andes mountain range. Q. J. R. Meteorol. Soc. 139, 451466.CrossRefGoogle Scholar
Sato, K. 1994 A statistical study of the structure, saturation and sources of inertio-gravity waves in the lower stratosphere observed with the MU radar. J. Atmos. Terr. Phys. 56, 755774.CrossRefGoogle Scholar
Sato, K., O’Sullivan, D. & Dunkerton, T. 1997 Low-frequency inertia-gravity waves in the stratosphere revealed by three-week continuous observation with the MU radar. Geophys. Res. Lett. 24, 17391742.CrossRefGoogle Scholar
Sato, K., Tateno, S., Watanabe, S. & Kawatani, Y. 2012 Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J. Atmos. Sci. 69, 13781396.CrossRefGoogle Scholar
Senf, F. & Achatz, U. 2011 On the impact of middle-atmosphere thermal tides on the propagation and dissipation of gravity waves. J. Geophys. Res. 116, D24110.Google Scholar
Shutts, G. J. 1998 Stationary gravity-wave structure in flows with directional wind shear. Q. J. R. Meteorol. Soc. 124, 14211442.Google Scholar
Sonmor, L. J. & Klaasen, G. P. 2000 Mechanisms of gravity wave focusing in the middle atmosphere. J. Atmos. Sci. 57, 493510.2.0.CO;2>CrossRefGoogle Scholar
Tanushev, N. M., Quian, J. & Ralston, J. V. 2007 Mountain waves and Gaussian beams. Multiscale Model. Simul. 6, 688709.CrossRefGoogle Scholar
Tateno, S. & Sato, K. 2008 A study of inertia-gravity waves in the middle stratosphere based on intensive radiosonde observations. J. Met. Soc. Japan 86, 719732.CrossRefGoogle Scholar
Thompson, R. O. R. Y. 1978 Observation of inertial waves in the stratosphere. Q. J. R. Meteorol. Soc. 104, 691698.CrossRefGoogle Scholar
Wang, S., Zhang, F. & Epifanio, C. C. 2010 Forced gravity wave response near the jet exit region in a linear model. Q. J. R. Meteorol. Soc. 136, 17731787.CrossRefGoogle Scholar
Warner, C. D. & McIntyre, M. E. 1996 On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere. J. Atmos. Sci. 53, 32133235.2.0.CO;2>CrossRefGoogle Scholar
Wei, J. & Zhang, F. 2014 Mesoscale gravity waves in moist baroclinic jet-front systems. J. Atmos. Sci. 71, 929952.CrossRefGoogle Scholar
Winters, K. B. & D’Asaro, E. A. 1994 Three-dimensional wave instability near a critical level. J. Fluid Mech. 272, 255284.CrossRefGoogle Scholar
Yamamori, M. & Sato, K. 2006 Characteristics of inertia gravity waves over the South Pacific as revealed by radiosonde observations. J. Geophys. Res. 111, D16111.Google Scholar
Yuan, L. & Fritts, D. 1989 Influence of mean shear on the dynamical instability of an inertio-gravity wave. J. Atmos. Sci. 46, 25622568.2.0.CO;2>CrossRefGoogle Scholar
Zhang, F. 2004 Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci. 61, 440457.2.0.CO;2>CrossRefGoogle Scholar