Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T21:43:49.004Z Has data issue: false hasContentIssue false

Bounds for growth rates for dynamos with shear

Published online by Cambridge University Press:  06 March 2012

M. R. E. Proctor*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
*
Email address for correspondence: [email protected]

Abstract

In several recent papers it has been established that the addition of a shear flow to a small-scale velocity field can enhance dynamo action. Many of these studies show that the growth rate of the magnetic energy increases linearly with the shear amplitude over a range of shears. In this paper it is shown analytically that for a variety of dynamo models and very large shear amplitudes , growth rates increase no faster than under plausible conditions on the amplitude of the remaining velocity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Backus, G. E. 1958 A class of self-sustaining dissipative spherical dynamos. Ann. Phys. 4, 372447.CrossRefGoogle Scholar
2. Heinemann, T., McWilliams, J. C. & Schekochihin, A. A. 2012 Large-scale magnetic field generation by randomly forced shearing waves. Phys. Rev. Lett. 107, 255004.CrossRefGoogle Scholar
3. Hughes, D. W & Proctor, M. R. E. 2009 Large-scale dynamo action driven by velocity shear and rotating convection. Phys. Rev. Lett. 102, 044501.CrossRefGoogle ScholarPubMed
4. Mitra, D. & Brandenburg, A. 2012 Scaling and intermittency in incoherent -shear dynamo. Mon. Not. R. Astron. Soc. 420, 21702177.CrossRefGoogle Scholar
5. Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
6. Ponty, Y., Gilbert, A. D. & Soward, A. M. 2001 Kinematic dynamo action in large magnetic Reynolds number flows driven by shear and convection. J. Fluid Mech. 435, 261287.CrossRefGoogle Scholar
7. Proctor, M. R. E. & Hughes, D. W. 2011 Dynamo mechanisms in rotating convection with shear. In Astrophysical Dynamics: from Stars to Galaxies, Proceedings IAU Symposium No. 271, (ed. N. H. Brummell, A. S. Brun, M. Miesch & Y. Ponty), pp. 240–246, doi:10.1017/S1743921311017662.CrossRefGoogle Scholar
8. Richardson, K. J. & Proctor, M. R. E. 2012 Fluctuating dynamos by iterated matrices. Mon. Not. R. Astron. Soc., in press, doi:10.1111/j.1745-3933.2012.01235.x.CrossRefGoogle Scholar
9. Yousef, T. A., Heinemann, T., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I., Iskakov, A. B., Cowley, S. C. & McWilliams, J. C. 2008a Generation of magnetic field by combined action of turbulence and shear. Phys. Rev. Lett. 100, 184501.CrossRefGoogle ScholarPubMed
10. Yousef, T. A., Heinemann, T., Rincon, F., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I., Cowley, S. C. & McWilliams, J. C. 2008b Numerical experiments on dynamo action in sheared and rotating turbulence. Astron. Nachr. 329, 737749.CrossRefGoogle Scholar
11. Zhang, P., Gilbert, A. D. & Zhang, K. 2006 Nonlinear dynamo action in rotating convection and shear. J. Fluid Mech. 546, 2549.CrossRefGoogle Scholar