Hostname: page-component-5f745c7db-j9pcf Total loading time: 0 Render date: 2025-01-06T07:06:32.031Z Has data issue: true hasContentIssue false

Boundary-layer solutions of single-mode convection equations

Published online by Cambridge University Press:  20 April 2006

N. Riahi
Affiliation:
Department of Earth and Space Sciences, Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024

Abstract

Nonlinear thermal convection between two stress-free horizontal boundaries is studied using the modal equations for cellular convection. Assuming a large Rayleigh number R the boundary-layer method is used for different ranges of the Prandtl number σ. The heat flux F is determined for the values of the horizontal wavenumber a which maximizes F. For a large Prandtl number, σ [Gt ] R(log R)−1, inertial terms are insignificant, a is either of order one (for $\sigma \geqslant R^{\frac{2}{3}}$) or proportional to $R^{\frac{1}{3}}\sigma^{-\frac{1}{2}}$ (for $\sigma \ll R^{\frac{2}{3}}$) and F is proportional to $R^{\frac{1}{3}}$. For a moderate Prandtl number, \[ (R^{-1}\log R)^{\frac{1}{9}} \ll \sigma \ll R^{\frac{1}{6}}(\log R)^{-1}, \] inertial terms first become significant in an inertial layer adjacent to the viscous buoyancy-dominated interior, and a and F are proportional to R¼ and \[ R^{\frac{3}{10}}\sigma^{\frac{1}{5}} (\log\sigma R^{\frac{1}{4}})^{\frac{1}{10}}, \] respectively. For a small Prandtl number, $R^{-1} \ll \sigma \ll (R^{-1} \log R)^{\frac{1}{9}}$, inertial terms are significant both in the interior and the boundary layers, and a and F are proportional to ($R \sigma)^{\frac{9}{32}} (\log R\sigma)^{-\frac{1}{32}}$ and ($R \sigma)^{\frac{5}{16}} (\log R \sigma)^{\frac{3}{16}}$, respectively.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busse, F. H. 1969 J. Fluid Mech. 37, 457.
Busse, F. H. & Clever, R. M. 1981 J. Fluid Mech. 102, 7583.
Clever, R. M. & Busse, F. H. 1981 J. Fluid Mech. 102, 6174.
Glansdorff, P. & Prigogine, I. 1964 Physica 30, 351.
Gough, D. O. 1977 Problem of Stellar Convection (ed. E. A. Spiegel and J. P. Zahn). Lecture notes in Physics, vol. 7. Springer.
Gough, D. O., Spiegel, E. A. & Toomre, J. 1975 J. Fluid Mech. 68, 695.
Howard, L. N. 1965 Notes from summer study program in geophysical fluid dynamics. Woods Hole Oceanographic Inst. 1, 125.Google Scholar
Jones, C. A., Moore, D. R. & Weiss, N. O. 1976 J. Fluid Mech. 73, 353.
Roberts, P. H. 1966 In Non-Equilibrium Thermodynamics: Variational Techniques and Stability (ed. R. J. Donnelley, R. Herman and I. Prigogine). University of Chicago Press.
Spiegel, E. A. 1971 Ann. Rev. Astronomy & Astrophys. 9, 323.
Toomre, J., Gough, D. O. & Spiegel, E. A. 1977 J. Fluid Mech. 79, 1.