No CrossRef data available.
Published online by Cambridge University Press: 20 April 2006
Measurements have been made of the pressure distribution and turbulent-boundary-layer development on the afterbody of a model engine nacelle with a jet exhausting from the base and with the jet replaced by a parallel solid sting. It was found that the effect of replacing the jet by a solid body was to increase the pressure recovery over the afterbody and hence give a lower drag than with the jet. These changes in the pressure distribution affected the boundary-layer development and turbulence structure by different methods based on a momentum integral equation and the kinetic equation for the turbulence. Both methods approximately incorporate the effects of convergence and divergence of the flow caused by changes in transverse curvature of the surface. Neither method was completely satisfactory for the prediction of the overall boundary-layer development.
It was also found that, near the tail of the model, where the body radius is decreasing rapidly, the Reynolds shear stress was much lower than it would be in a two-dimensional boundary layer with the same pressure gradient. Calculations and analysis based on earlier work show that this reduction is directly related to the rates of strain associated with the convergence of the streamlines over the afterbody.