Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T06:23:19.570Z Has data issue: false hasContentIssue false

Boundary conditions and linear analysis of finite-cell Rayleigh–Bénard convection

Published online by Cambridge University Press:  26 April 2006

Yih-Yuh Chen
Affiliation:
Condensed Matter Physics 114-36, California Institute of Technology. Pasadena. CA 91125, USA Present address: Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan, ROC.

Abstract

The linear stability of finite-cell pure-fluid Rayleigh–Bénard convection subject to any homogeneous viscous and/or thermal boundary conditions is investigated via a variational formalism and a perturbative approach. Some general properties of the critical Rayleigh number with respect to change of boundary conditions or system size are derived. It is shown that the chemical reaction–diffusion model of spatial-pattern-forming systems in developmental biology can be thought of as a special case of the convection problem. We also prove that, as a result of the imposed realistic boundary conditions, the nodal surfaces of the temperature of a nonlinear stationary state have a tendency to be parallel or orthogonal to the sidewalls, because the full fluid equations become linear close to the boundary, thus suggesting similar trend for the experimentally observed convective rolls.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers G., Cross M. C., Hohenberg, P. C. & Safran S. 1981 J. Fluid Mech. 110, 297.
BergeA, P. & Dubois M. 1980 In Systems Far from Equilibrium (ed. L. Garrido). Springer.
Buell, J. C. & Catton I. 1983 Phys. Fluids 26, 892.
Busse F. H. 1985 In Hydrodynamic Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub). Springer.
Busse, F. H. & Riahi N. 1980 J. Fluid Mech. 96, 243.
Carmo M. P. do 1976 Differential Geometry of Curves and Surfaces. Prentice-Hall.
Chana, M. S. & Daniels P. G. 1989 J. Fluid Mech. 199, 257.
Chandrasekhar S. 1954 Am. Math. Mon. 61, 170.
Chandrasekhar S. 1961 Hydrodynamic and Hydromagnetic Stability, pp. 27ff. Oxford University Press.
Charlson, G. S. & Sani R. L. 1970 Intl J. Heat Mass Transfer 13, 1469.
Charlson, G. S. & Sani R. L. 1971 Intl J. Heat Mass Transfer 14, 2157.
Chen Y.-Y. 1991 Effects of boundaries on Rayleigh–BeAnard convection. PhD thesis, California Institute of Technology.
Chen Y.-Y. 1992 Phys. Rev. A 45, 3727.
Courant, R. & Hilbert D. 1966 Methods of Mathematical Physics, vol. I. chapter VI. Interscience.
Croquette V. 1989a Contemp. Phys. 30, 113.
Croquette V. 1989b Contemp. Phys. 30, 153.
Croquette V., Mory, M. & Schosseler F. 1983 J. Phys. Paris 44, 293.
Cross M. C. 1980 Phys. Fluids 23, 1727.
Cross M. C. 1982 Phys. Fluids 25, 936.
Cross M. C. 1988 Phys. Rev. A 38, 3593.
Cross M. C., Daniels P. G., Hohenberg, P. C. & Siggia E. D. 1983 J. Fluid Mech. 127, 155.
Davis S. H. 1967 J. Fluid Mech. 30, 465.
Edwards B. F. 1988 J. Fluid Mech. 191, 583.
Gollub, J. P. & Steinman J. F. 1981 Phys. Rev. Lett. 47, 505.
Hales A. L. 1937 Geophys. Suppl. Mon. Not. R. Astr. Soc. 4, 122.
Joseph D. D. 1976 Stability of Fluid Motions, vols. I & II. Springer.
Kolodner P., Bensimon, D. & Surko C. M. 1988 Phys. Rev. Lett. 60, 1723.
Morse, P. M. & Feshbach H. 1968 Methods of Theoretical Physics. vol. I & II. McGraw-Hill.
Murray J. D. 1989 Mathematical Biology. Springer.
Newell, A. C. & Whitehead J. A. 1969 J. Fluid Mech. 38, 279.
Niemela J. J., Ahlers, G. & Cannel D. S. 1990 Phys. Rev. Lett. 64, 1365.
Ostrach, S. & Pnueli D. 1963 Trans. ASME C: J. Heat Transfer 85, 346.
Pellew, A. & Southwell R. V. 1940 Proc. R. Soc. Lond. A 176, 312.
Peotenhauer J. M., Niemela, J. J. & Donnelly R. J. 1987 J. Fluid Mech. 175, 85.
Pnueli, D. & Iscovici 1967 Israel J. Tech. 5, 243.
Sani R. L. 1964 Z. Angew. Math. Phys. 15, 381.
Segel L. A. 1967 J. Fluid Mech. 30, 625.
Shapere, A. & Wilczek, F. (ed.) 1989 Geometric Phases in Physics. World Scientific.
Shaumeyer J. N., Behringer, R. P. & Baierlein R. 1981 J. Fluid Mech. 109, 339.
Somerscales, E. & Dropkin D. 1966 Intl J. Heat Mass Transfer 9, 1189.
Sorokin V. S. 1953 Prikl. Mat. Mekh. 17, 39.
Sorkin, V. S. & Sushkin I. V. 1960 Sov. Phys. JETP 11, 440.
Sparrow E. M., Goldstein, R. J. & Jonsson V. H. 1964 J. Fluid Mech. 18, 513.
Steinberg V., Moses, E. & Feinberg J. 1987 In Chaos ′87: Proc. Intl Conf. on the Physics of Chaos and Systems Far from Equilibrium, Monterey, CA, January 1987 (ed. M. Duong-Van). North-Holland.
Turing A. M. 1952 Phil. Trans. R. Soc. Lond. B 237, 37.
Verhoeven J. D. 1969 Phys. Fluids 12, 1733.
Yih C.-S. 1959 Q. Appl. Maths 17, 25.
Zhong F., Ecke, R. & Steinberg V. 1991 Asymmetric modes and the transition to vortex structures in rotating Rayleigh–BeAnard convection. Preprint.