Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T10:25:26.287Z Has data issue: false hasContentIssue false

Bi-stability of a pendular disk in laminar and turbulent flows

Published online by Cambridge University Press:  05 July 2013

M. Obligado
Affiliation:
Laboratoire des Écoulements Géophysiques et Industriels, CNRS/UJF/G-INP UMR 5519, Université de Grenoble, BP53, 38041, Grenoble, France
M. Puy
Affiliation:
Laboratoire des Écoulements Géophysiques et Industriels, CNRS/UJF/G-INP UMR 5519, Université de Grenoble, BP53, 38041, Grenoble, France
M. Bourgoin*
Affiliation:
Laboratoire des Écoulements Géophysiques et Industriels, CNRS/UJF/G-INP UMR 5519, Université de Grenoble, BP53, 38041, Grenoble, France
*
Email address for correspondence: [email protected]

Abstract

The simple pendulum remains one of the most fundamental systems studied in physics. It is commonly used as a model to illustrate a broad variety of mechanisms in a wide range of areas. However, in spite of this popularity, subtle behaviours still remain to be discovered and to be explored when the pendulum is strongly coupled to fluid mechanics. This is for instance illustrated in recent studies by Neill, Livelybrooks & Donnelly (Am. J. Phys., vol. 75, 2007, pp. 226–229) and Bolster, Hershberger & Donnelly (Phys. Rev. E, vol. 81, 2010, pp. 1–6) which highlight the impact on a simple spherical pendulum of vortex shedding and added mass effects. In the present work we show that the equilibrium of a pendular disk facing a flow exhibits bi-stability and hysteresis. We give a simple interpretation of this behaviour in terms of a two-potential-well description, only requiring to know the angular dependence of the normal drag coefficient of an inclined plate. We investigate the influence of turbulence on the equilibrium of the pendulum in general and on the observed bi-stability in particular. Our results have potentially important fundamental and practical consequences: (i) they extend the attractiveness of the pendulum as a model to investigate generic questions related to bi-stable stochastic processes, (ii) they highlight important fluid dynamic mechanisms, including turbulent drag enhancement and fluid–structure interaction issues.

Type
Rapids
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auguste, F., Magnaudet, J. & Fabre, D. 2013 Falling styles of disks. J. Fluid Mech. 719, 388405.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15 (11), 34963513.CrossRefGoogle Scholar
Bolster, D., Hershberger, R. E. & Donnelly, R. J. 2010 Oscillating pendulum decay by emission of vortex rings 1. Phys. Rev. E 81, 16.Google Scholar
Chrust, M., Bouchet, G. & Dusek, J. 2013 Numerical simulation of the dynamics of freely falling discs. Phys. Fluids 25 (4), 044102.Google Scholar
Flachsbart, V. O. 1932 Messungen an ebenen und gewölbten Platten. In Ergenbisse der Aerodynamischen Versuchsanstalt zu Göttingen, IV., Ava edn (ed. Prandtl, L.), pp. 96100. Verlag von R. Oldenburg.Google Scholar
Guivier-Curien, C., Deplano, V. & Bertrand, E. 2009 Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements. Med. Engng Phys. 31 (8), 986993.Google Scholar
Hoerner, S. F. 1965 Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Published by the author.Google Scholar
Homann, H., Bec, J. & Grauer, R. 2013 Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer. J. Fluid Mech. 721, 155179.Google Scholar
Kramers, H. A. 1940 Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7 (4), 284304.Google Scholar
Lim, H.-G., Park, J.-H. & Jang, S.-C. 2006 Development of a swing check valve model for a low velocity pipe flow prediction. Nucl. Engng Des. 236 (10), 10511060.Google Scholar
McElhaney, K. L 2000 An analysis of check valve performance characteristics based on valve design. Nucl. Engng Des. 197 (1–2), 169182.Google Scholar
Mittal, S. & Saxena, P. 2002 Prediction of hysteresis associated with the static stall of an airfoil. AIAA J. 38, 933935.Google Scholar
Mueller, T. J. 1985 The influence of laminar separation and transition on low Reynolds number airfoil hysteresis. J. Aircraft 22 (9), 763770.Google Scholar
Neill, D., Livelybrooks, D. & Donnelly, R. J. 2007 A pendulum experiment on added mass and the principle of equivalence. Am. J. Phys. 75 (March), 226229.Google Scholar
Obligado, M., Missaoui, M., Monchaux, R., Cartellier, A. & Bourgoin, M. 2011 Reynolds number influence on preferential concentration of heavy particles in turbulent flows. J. Phys.: Conf. Ser. 318 (5), 052015.Google Scholar
Sotiropoulos, F. & Borazjani, I. 2009 A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Engng Comput. 47 (3), 245256.Google Scholar
Van Kampen, N. G. 2007 Stochastic Processes in Physics and Chemistry. Elsevier.Google Scholar