Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:55:06.119Z Has data issue: false hasContentIssue false

Bifurcation phenomena in Taylor-Couette flow in a very short annulus

Published online by Cambridge University Press:  21 April 2006

G. Pfister
Affiliation:
Institute of Applied Physics, University of Kiel, W. Germany
H. Schmidt
Affiliation:
Institute of Applied Physics, University of Kiel, W. Germany
K. A. Cliffe
Affiliation:
Theoretical Physics Division, AERE Harwell, Oxford OX1 0RA, UK
T. Mullin
Affiliation:
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK

Abstract

We present the results of an experimental and numerical investigation into Taylor-Couette flow with gap-length to width ratios (Γ = l/d) ranging from 0.3 to 1.4. Laser-Doppler-velocimetry is used to obtain quantitative information on the bifurcation set experimentally, and novel flow phenomena are uncovered. These results are compared with those obtained using numerical bifurcation techniques applied to a finite-element discretization of the Navier-Stokes equations. In general, the agreement is good and most of the observations are satisfactorily explained.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitta, A., Ahlers, G. & Cannell, D. S. 1985 Tri-critical phenomena in rotating Couette-Taylor flow. Phys. Rev. Lett. 54, 673677.Google Scholar
Benjamin, T. B. 1978a Bifurcation phenomena in steady flows of a viscous liquid. I. Theory. Proc. R. Soc. Lond. A 359, 2743.Google Scholar
Benjamin, T. B. 1978b Bifurcation phenomena in steady flows of a viscous liquid. II. Experiments. Proc. R. Soc. Lond. A 359, 2743.Google Scholar
Benjamin, T. B. & Mullin, T. 1981 Anomalous modes in the Taylor experiment. Proc. R. Soc. Lond. A 377, 221249.Google Scholar
Benjamin, T. B. & Mullin, T. 1982 Notes on the multiplicity of flows in the Taylor experiment. J. Fluid Mech. 121, 219230.Google Scholar
Bolstad, J. H. & Keller, H. B. 1987 Computation of the anomalous modes in the Taylor experiment. J. Comp. Phys. 69, 230251.Google Scholar
Cliffe, K. A. 1983 Numerical calculations of two-cell Taylor flows. J. Fluid Mech. 135, 219233.Google Scholar
Cliffe, K. A. 1984 Numerical calculations of the primary flow exchange process in the Taylor Problem. J. Fluid Mech. (submitted).Google Scholar
Cliffe, K. A., Jepson, A. D. & Spence, A. 1986 The numerical solution of bifurcation problems with symmetry with application to the finite Taylor problem. In Numerical Methods for Fluid Dynamics, II (ed. K. W. Morton & M. J. Baines), pp. 155176. Clarendon.
Cliffe, K. A. & Mullin, T. 1985 A numerical and experimental study of anomalous modes in the Taylor problem. J. Fluid Mech. 153, 243258.Google Scholar
Cliffe, K. A. & Spence, A. 1985 The calculation of high order singularities in the finite Taylor problem. In Numerical Methods for Bifurcation Problems (ed. T. Küpper, H. D. Mittleman & H. Weber), pp. 129144. Birkhauser.
Cliffe, K. A. & Spence, A. 1986 Numerical calculations of bifurcations in the finite Taylor problem. In Numerical Methods for Fluid Dynamics, II (ed. K. W. Morton & M. J. Baines), pp. 177207. Clarendon.
Hall, P. 1982 Centrifugal instabilities of circumferential flows in finite cylinders: the wide gap problem. Proc. R. Soc. Lond. A 384, 359379.Google Scholar
Hille, P. 1984 Realtime measurements of velocity and Reynolds stress in turbulent boundary layers. In Proc. Second Intl Symp. on Applications of Laser Anemometry to Fluid Mechanics.
Keller, H. B. 1977 Numerical solutions of bifurcation and nonlinear eigenvalue problems. In Applications of Bifurcation Theory (ed. P. H. Rabinowitz), pp. 359384. Academic.
Lücke, M., Mihelcic, M., Wingerath, K. & Pfister, G. 1984 Flow in a small annulus between concentric cylinders. J. Fluid Mech. 140, 343353.Google Scholar
Mullin, T. 1982 Mutations of steady cellular flows in the Taylor experiment. J. Fluid Mech. 121, 207218.Google Scholar
Mullin, T., Pfister, G. & Lorenzen, A. 1982 New observations on hysteresis effects in Taylor-Couette flow. Phys. Fluids 25, 11341136.Google Scholar
Pfister, G. 1985 Deterministic chaos in rotational Taylor-Couette flow. In Flow of Real Fluids (ed. G. E. A. Meier & F. Obermeier). Lecture Notes in Physics, vol. 235, pp. 199210. Springer.
Pfister, G., Gerdts, U., Lorenzen, A. & Schätzel, K. 1983 Hardware and software implementation of on-line velocity correlation measurements in oscillatory and turbulent rotational Couette Flow. In Photon Correlation Techniques in Fluid Mechanics, pp. 256263. Springer.
Schaeffer, D. G. 1980 Analysis of a model in the Taylor problem. Math. Proc. Camb. Phil. Soc. 87, 307337.Google Scholar
Schmidt, H. 1983 Diplomarbeit, University of Kiel, West Germany (unpublished).
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289343.Google Scholar
Thomas, E. 1979 Sichtbarmachung der Strömung zwischen koaxialen Zylindern: Taylorwirbel und Randeffekte. Staatsexamensarbeit, University of Kiel.
Velte, W. 1964 Stabilitätsverhalten und Verzweigung stationärer Lösungen der Navier-Stokes-schen Gleichungen. Arch. Rat. Mech. Anal. 16, 97125.Google Scholar
Velte, W. 1966 Stabilität und Verzweigung stationärer Lösungen der Navier-Stokes-schen Gleichungen beim Taylorproblem. Arch. Rat. Mech. Anal. 22, 114.Google Scholar