Hostname: page-component-55f67697df-xq6d9 Total loading time: 0 Render date: 2025-05-10T04:17:28.297Z Has data issue: false hasContentIssue false

The behaviour of turbulence production in adverse pressure gradient turbulent boundary layers

Published online by Cambridge University Press:  07 May 2025

Mingze Ma
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
Jinrong Zhang
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
Mingze Han
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
Hanqi Song
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
Chao Yan*
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
*
Corresponding author: Chao Yan, [email protected]

Abstract

This paper investigates the behaviour of turbulence production in adverse pressure gradient (APG) turbulent boundary layers (TBLs), including the range of pressure gradients from zero-pressure-gradient (ZPG) to separation, moderate and high Reynolds numbers, and equilibrium and non-equilibrium flows. The main focus is on predicting the values and positions of turbulence production peaks. Based on the unique ability of turbulence production to describe energy exchange, the idea that the ratios of the mean flow length scales to the turbulence length scales are locally smallest near peaks is proposed. Thereby, the ratios of length scales are defined for the inner and outer regions, respectively, as well as the ratios of time scales for further consideration of local information. The ratios in the inner region are found to reach the same constant value in different APG TBLs. Like turbulence production in the ZPG TBL, turbulence production in APG TBLs is shown to have a certain invariance of the inner peak. The value and position of the inner peak can also be predicted quantitatively. In contrast, the ratios in the outer region cannot be determined with unique coefficients, which accounts for the different self-similarity properties of the inner and outer regions. The outer time scale ratios establish a link between mean flow and turbulence, thus participating in the discussion on half-power laws. The present results support the existence of a half-power-law region that is not immediately adjacent to the overlapping region.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Afzal, N. 2008 Turbulent boundary layer with negligible wall stress. Trans. ASME J. Fluids Engng 130 (5), 051205.CrossRefGoogle Scholar
Allamaprabhu, C., Raghunandan, B. & Morinigo, J. 2011 Improved prediction of flow separation in thrust optimized parabolic nozzles with FLUENT. In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2011-5689.Google Scholar
Bai, R., Ma, M., Zhang, J., Jiang, z. & Yan, C. 2023 A production term study of delayed detached eddy simulation for turbulent near wake based on proper orthogonal decomposition. Phys. Fluids 35 (10), 105115.CrossRefGoogle Scholar
Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2016 Large-eddy simulations of adverse pressure gradient turbulent boundary layers. J. Phys.: Conf. Ser. 708, 12012.Google Scholar
Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2017 History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667692.CrossRefGoogle Scholar
Bradshaw, P., Ferriss, D.H. & Atwell, N.P. 1967 Calculation of boundary-layer development using the turbulent energy equation. J. Fluid Mech. 28 (03), 593616.CrossRefGoogle Scholar
Cantwell, B.J. 2019 A universal velocity profile for smooth wall pipe flow. J. Fluid Mech. 878, 834874.CrossRefGoogle Scholar
Castillo, L. & George, W.K. 2001 Similarity analysis for turbulent boundary layer with pressure gradient: outer flow. AIAA J. 39 (1), 4147.CrossRefGoogle Scholar
Chen, X. & Sreenivasan, K.R. 2021 Reynolds number scaling of the peak turbulence intensity in wall flows. J. Fluid Mech. 908, R3.CrossRefGoogle Scholar
Chen, X. & Sreenivasan, K.R. 2022 Law of bounded dissipation and its consequences in turbulent wall flows. J. Fluid Mech. 933, A20.CrossRefGoogle Scholar
Chen, X. & Sreenivasan, K.R. 2023 Reynolds number asymptotics of wall-turbulence fluctuations. J. Fluid Mech. 976, A21.CrossRefGoogle Scholar
Clauser, F.H. 1956 The turbulent boundary layer. Adv. Appl. Mech. 4, 151.CrossRefGoogle Scholar
Coleman, G.N. 2021 Numerical simulation of pressure-induced separation of turbulent flat-plate boundary layers: definition and overview of new cases with suction-only transpiration and a step in reynolds number. Tech Rep. NASA/TM-20210020762. NASA, Langley Research Center.Google Scholar
Coleman, G.N., Rumsey, C.L. & Spalart, P.R. 2018 Numerical study of turbulent separation bubbles with varying pressure gradient and Reynolds number. J. Fluid Mech. 847, 2870.CrossRefGoogle ScholarPubMed
Cousteix, J. 1989 Aérodynamique. Turbulence et couche limite, Cepadues Editions.Google Scholar
Cuvier, C., 2017 Extensive characterisation of a high Reynolds number decelerating boundary layer using advanced optical metrology. J. Turbul. 18 (10), 929972.CrossRefGoogle Scholar
Devenport, W.J. & Lowe, K.T. 2022 Equilibrium and non-equilibrium turbulent boundary layers. Prog. Aerosp. Sci. 131, 100807.CrossRefGoogle Scholar
Fan, Y., Li, W., Atzori, M., Pozuelo, R., Schlatter, P. & Vinuesa, R. 2020 Decomposition of the mean friction drag in adverse-pressure-gradient turbulent boundary layers. Phys. Rev. Fluids 5 (11), 114608.CrossRefGoogle Scholar
Fernholz, H.H. & Finley, P.J. 1996 The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog. Aerosp. Sci. 32 (4), 245311.CrossRefGoogle Scholar
Georgiadis, N. & Yoder, D. 2013 Recalibration of the shear stress transport model to improve calculation of shock separated flows. In 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2013-0685.Google Scholar
Gioia, G., Guttenberg, N., Goldenfeld, N. & Chakraborty, P. 2010 Spectral theory of the turbulent mean-velocity profile. Phys. Rev. Lett. 105 (18), 184501.CrossRefGoogle ScholarPubMed
Gungor, T.R., Maciel, Y. & Gungor, A.G. 2022 Energy transfer mechanisms in adverse pressure gradient turbulent boundary layers: production and inter-component redistribution. J. Fluid Mech. 948, A5.CrossRefGoogle Scholar
Gungor, A.G., Maciel, Y., Simens, M.P. & Soria, J. 2016 Scaling and statistics of large-defect adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 59, 109124.CrossRefGoogle Scholar
Harun, Z., Monty, J.P., Mathis, R. & Marusic, I. 2013 Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 715, 477498.CrossRefGoogle Scholar
Isakson, A. 1937 On the formula for the velocity distribution near walls. Zh. Eksp. Teor. Fiz. 7, 919.Google Scholar
Jiménez, J., Hoyas, S., Simens, M.P. & Mizuno, Y. 2010 Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335360.CrossRefGoogle Scholar
Kalitzin, G., Medic, G. & Xia, G. 2016 Improvements to SST turbulence model for free shear layers, turbulent separation and stagnation point anomaly. In 54th AIAA Aerospace Sciences Meeting, AIAA paper 2016-1601.Google Scholar
Kitsios, V., Sekimoto, A., Atkinson, C., Sillero, J.A., Borrell, G., Gungor, A.G., Jimnez, J. & Soria, J. 2017 Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation. J. Fluid Mech. 829, 392419.CrossRefGoogle Scholar
Knopp, T. 2016 A new wall-law for adverse pressure gradient flows and modification of $k-\omega$ type RANS turbulence models. In 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-0588.Google Scholar
Knopp, T., Reuther, N., Novara, M., Schanz, D., Schülein, E., Schröder, A. & Kähler, C.J. 2021 Experimental analysis of the log law at adverse pressure gradient. J. Fluid Mech. 918, A17.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 Local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Krogstad, P. & Skåre, P.E. 1995 Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer. Phys. Fluids 7 (8), 20142024.CrossRefGoogle Scholar
Lee, J.H. & Sung, H.J. 2008 Effects of an adverse pressure gradient on a turbulent boundary layer. Intl J. Heat Fluid Flow 29 (3), 568578.CrossRefGoogle Scholar
Lee, J.H. 2017 Large-scale motions in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 810, 323361.CrossRefGoogle Scholar
Ma, M., Bai, R., Song, H., Zhang, J. & Yan, C. 2024 a Asymptotic expansions and scaling of turbulent boundary layers in adverse pressure gradients. Phys. Fluids 36 (6), 065139.CrossRefGoogle Scholar
Ma, M., Han, M., Shao, Z. & Yan, C. 2024 b Scaling laws for the mean velocity in adverse pressure gradient turbulent boundary layers based on asymptotic expansions. Phys. Fluids 36 (9), 095175.CrossRefGoogle Scholar
Maciel, Y., Rossignol, K.-S. & Lemay, J. 2006 Self-similarity in the outer region of adverse-pressure-gradient turbulent boundary layers. AIAA J. 44 (11), 24502464.CrossRefGoogle Scholar
Maciel, Y., Wei, T., Gungor, A.G. & Simens, M.P. 2018 Outer scales and parameters of adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 844, 535.CrossRefGoogle Scholar
Marusic, I., Baars, W.J. & Hutchins, N. 2017 Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence. Phys. Rev. Fluids 2 (10), 100502.CrossRefGoogle Scholar
Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J. & Sreenivasan, K.R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.CrossRefGoogle Scholar
Marusic, I. & Perry, A.E. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support.J. Fluid Mech. 298, 389407.CrossRefGoogle Scholar
Mellor, G.L. & Gibson, D.M. 1966 Equilibrium turbulent boundary layers. J. Fluid Mech. 24 (2), 225253.CrossRefGoogle Scholar
Menter, F.R. 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 15981605.CrossRefGoogle Scholar
Menter, F.R., Kuntz, M. & Langtry, R. 2003 Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transfer 4 (1), 625632.Google Scholar
Michel, R., Quemard, C. & Durant, R. 1969 Application d’un Schéma De Longueur De mélange à l’étude Des Couches Limites Turbulentes d’équilibre., Note Technique 154. ONERA.Google Scholar
Millikan, C.B. 1938 A critical discussion of turbulent flows in channels and circular Tubes. In Proceedings of the 5th International Congress for Applied Mechanics, pp. 386392. Wiley.Google Scholar
Monty, J.P., Harun, Z. & Marusic, I. 2011 A parametric study of adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 32 (3), 575585.CrossRefGoogle Scholar
Nagano, Y., Tagawa, M. & Tsuji, T. 1992 Effects of adverse pressure gradients on mean flow and turbulence statistics in a boundary layer. In Proceedings of Turbulent Shear Flows, vol. 8, pp. 721.Google Scholar
Nickels, T.B. 2004 Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech. 521, 217239.CrossRefGoogle Scholar
Panton, R.L. 2005 Review of wall turbulence as described by composite expansions. Appl. Mech. Rev. 58 (1), 136.CrossRefGoogle Scholar
Panton, R.L. 2007 Composite asymptotic expansions and scaling wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 733754.Google ScholarPubMed
Perry, A.E., Bell, J.B. & Joubert, P.N. 1966 Velocity and temperature profiles in adverse pressure gradient turbulent boundary layers. J. Fluid Mech. 25 (2), 299320.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Rahgozar, S. & Maciel, Y. 2011 Low- and high-speed structures in the outer region of an adverse-pressure-gradient turbulent boundary layer. Expl Therm. Fluid Sci. 35 (8), 15751587.CrossRefGoogle Scholar
Raje, P. & Sinha, K. 2021 Anisotropic SST turbulence model for shock-boundary layer interaction. Comput. Fluids 228, 105072.CrossRefGoogle Scholar
Renard, N. & Deck, S. 2016 A theoretical decomposition of mean skin friction production into physical phenomena across the boundary layer. J. Fluid Mech. 790, 339367.CrossRefGoogle Scholar
Reynolds, O. 1895 On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. Lond. A 186, 123164.Google Scholar
Rkein, H. & Laval, J.-P. 2023 Direct numerical simulation of adverse pressure gradient turbulent boundary layer up to $Re_\theta \simeq 8000$ . Intl J. Heat Fluid Flow 103, 109195.CrossRefGoogle Scholar
Romero, S.K., Zimmerman, S.J., Philip, J. & Klewicki, J.C. 2022 Stress equation based scaling framework for adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 93, 108885.CrossRefGoogle Scholar
Scheichl, B. & Kluwick, A. 2013 Non-unique turbulent boundary layer flows having a moderately large velocity defect: a rational extension of the classical asymptotic theory. Theor. Comput. Fluid Dyn. 27 (6), 735766.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
She, Z.-S., Chen, X. & Hussain, F. 2017 Quantifying wall turbulence via a symmetry approach: a Lie group theory. J. Fluid Mech. 827, 322356.CrossRefGoogle Scholar
Sillero, J.A., Jiménez, J. & Moser, R.D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to $\delta ^+\approx 2000$ . Phys. Fluids 25, 105102.CrossRefGoogle Scholar
Skote, M. & Henningson, D.S. 2002 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 471, 107136.CrossRefGoogle Scholar
Song, H., Ma, M., Yi, C., Shao, Z., Bai, R. & Yan, C. 2024 An innovative modification to the Menter shear-stress transport turbulence model employing the symbolic regression approach. Phys. Fluids 36 (6), 065108.CrossRefGoogle Scholar
Spalart, P.R. & Baldwin, B.S. 1987 Direct simulation of a turbulent oscillating boundary layer. NASA Tech. Mem. 89460.Ames Research Center, Moffett Field.Google Scholar
Spalart, P.R. & Watmuff, J.H. 1993 Experimental and numerical study of a turbulent boundary layer with pressure gradient. J. Fluid Mech. 249, 337371.CrossRefGoogle Scholar
Stratford, B.S. 1959 The prediction of separation of the turbulent boundary layer. J. Fluid Mech. 5 (01), 116.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT.CrossRefGoogle Scholar
Townsend, A.A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11 (1), 97120.CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Van Driest, E.R. & Blumer, C.B. 1963 Boundary layer transition, free-stream turbulence and pressure gradient effects. AIAA J. 1 (6), 13031306.CrossRefGoogle Scholar
Wei, T. 2018 Integral properties of turbulent-kinetic-energy production and dissipation in turbulent wall-bounded flows. J. Fluid Mech. 854, 449473.CrossRefGoogle Scholar
Wei, T. & Knopp, T. 2023 Outer scaling of the mean momentum equation for turbulent boundary layers under adverse pressure gradient. J. Fluid Mech. 958, A9.CrossRefGoogle Scholar
Wei, T., Fife, P., Klewicki, J. & McMurtry, P. 2005 Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303327.CrossRefGoogle Scholar
Wilcox, D.C. 2006 Turbulence Modeling for CFD. DCW Industries.Google Scholar
Xu, J., Zhang, Y. & Bai, J. 2015 One-equation turbulence model based on extended Bradshaw assumption. AIAA J. 53 (6), 14331441.CrossRefGoogle Scholar