Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T21:43:55.205Z Has data issue: false hasContentIssue false

The behaviour of clusters of spheres falling in a viscous fluid Part 2. Slow motion theory

Published online by Cambridge University Press:  28 March 2006

L. M. Hocking
Affiliation:
University College London, Gower St., W.C. 1

Abstract

A theoretical study is made of the behaviour of clusters of spheres falling in a viscous fluid under the assumptions that: (a) intertial effects are negligible, (b) the distance between any two spheres is larg compared with their radii. The equations of motion are derived and solved for a number of particular cases and the results compared with the experimental observations of the same motions reported in the preceding paper (Jayaweera, Mason & Slack 1964). For three or four spheres, initially in a horizontal line, the theory is in general agreement with the experiments. Three spheres forming an isosceles triangle are shown to oscillate about the horizontal and about the equlateral shape, so that this theory is unable to explain the observed tendency for three to six spheres to form a regular horizontal polygon. The stability of the steady configuration of n spheres at the vertices of a regular horizontal polygon is examined and it is found that the configuration is only stable for n < 7, which explains why this configuration is not observed for more than six spheres.

Type
Research Article
Copyright
© 1964 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jayaweera, K. O. L. F., Mason, B. J. & Slack, H. W. 1964 J. Fluid Mech. 20, 121.