Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T22:19:10.657Z Has data issue: false hasContentIssue false

Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening

Published online by Cambridge University Press:  13 April 2010

ANTOINE FOURRIÈRE*
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH UMR 7636 CNRS-ESPCI-P6-P7, 10 rue Vauquelin, 75231 Paris Cedex 05, France
PHILIPPE CLAUDIN
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH UMR 7636 CNRS-ESPCI-P6-P7, 10 rue Vauquelin, 75231 Paris Cedex 05, France
BRUNO ANDREOTTI
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH UMR 7636 CNRS-ESPCI-P6-P7, 10 rue Vauquelin, 75231 Paris Cedex 05, France
*
Email address for correspondence: [email protected]

Abstract

It is widely accepted that both ripples and dunes form in rivers by primary linear instability; the wavelength of the former scaling on the grain size and that of the latter being controlled by the water depth. We revisit here this problem in a theoretical framework that allows to give a clear picture of the instability in terms of dynamical mechanisms. A multi-scale description of the problem is proposed, in which the details of the different mechanisms controlling sediment transport are encoded into three quantities: the saturated flux, the saturation length and the threshold shear stress. Hydrodynamics is linearized with respect to the bedform aspect ratio. We show that the phase shift of the basal shear stress with respect to the topography, responsible for the formation of bedforms, appears in an inner boundary layer where shear stress and pressure gradients balance. This phase shift is sensitive to the presence of the free surface, and the related effects can be interpreted in terms of standing gravity waves excited by topography. The basal shear stress is dominated by this finite depth effect in two ranges of wavelength: when the wavelength is large compared to the flow depth, so that the inner layer extends throughout the flow, and in the resonant conditions, when the downstream material velocity balances the upstream wave propagation. Performing the linear stability analysis of a flat sand bed, the relation between the wavelength at which ripples form and the flux saturation length is quantitatively derived. It explains the discrepancy between measured initial wavelengths and predictions that do not take this lag between flow velocity and sediment transport into account. Experimental data are used to determine the saturation length as a function of grain size and shear velocity. Taking the free surface into account, we show that the excitation of standing waves has a stabilizing effect, independent of the details of the flow and sediment transport models. Consequently, the shape of the dispersion relation obtained from the linear stability analysis of a flat sand bed is such that dunes cannot result from a primary linear instability. We present the results of field experiments performed in the natural sandy Leyre river, which show the formation of ripples by a linear instability and the formation of dunes by a nonlinear pattern coarsening limited by the free surface. Finally, we show that mega-dunes form when the sand bed presents heterogeneities such as a wide distribution of grain sizes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. R. L. 1985 Principles of Physical Sedimentology. Blackburn Press.Google Scholar
Anderson, R. 1987 A theoretical model for aeolian impact ripples. Sedimentology 34, 943956.CrossRefGoogle Scholar
Anderson, R. 1990 Eolian ripples as examples of self-organization in geomorphological systems. Earth-Science Rev. 29, 7796.CrossRefGoogle Scholar
Andreotti, B. 2004 A two species model of aeolian sand transport. J. Fluid Mech. 510, 4750.CrossRefGoogle Scholar
Andreotti, B. & Claudin, C. 2007 Comment on ‘Minimal size of a barchan dune’. Phys. Rev. E 76, 063301.CrossRefGoogle ScholarPubMed
Andreotti, B. & Claudin, C. 2009 On the different regimes of subaqueous transport. Eur. Phys. J. B (submitted) arXiv:0910.4119.Google Scholar
Andreotti, B., Claudin, P. & Douady, S. 2002 Selection of dune shapes and velocities. Part 2. A two-dimensional modelling. Eur. Phys. J. B 28, 341352.CrossRefGoogle Scholar
Andreotti, B., Claudin, P. & Pouliquen, O. 2006 Aeolian sand ripples: experimental evidence of coarsening and saturation. Phys. Rev. Lett. 96, 028001.CrossRefGoogle Scholar
Andreotti, B., Claudin, C. & Pouliquen, O. 2009 Measurements of the aeolian sand transport saturation length. Geomorphology (submitted) arXiv:0806.3931.CrossRefGoogle Scholar
Annambhotla, V. S. S., Sayre, W. W. & Livesey, R. H. 1972 Statistical properties of Missouri River bed forms. J. Waterways Harbors Coastal Engng Div. 98, 489510.CrossRefGoogle Scholar
Ashley, G. M. 1990 Classification of large scale subaqueous bedforms: a new look at an old problem. J. Sedim. Res. 60, 161172.Google Scholar
Ayotte, K. W., Xu, D. & Taylor, P. A. 1994 The impact of turbulence closure schemes on predictions of the mixed spectral finite-difference model for flow over topography. Boundary-Layer Met. 68, 133.CrossRefGoogle Scholar
Baas, J. H. 1994 A flume study on the development and equilibrium morphology of current ripples in very fine sand. Sedimentology 41, 185209.CrossRefGoogle Scholar
Baas, J. H. 1999 An empirical model for the development and the equilibrium morphology of current ripples in fine sand. Sedimentology 46, 123138.CrossRefGoogle Scholar
Bagnold, R. A. 1941 The Physics of Blown Sand and Desert Dunes. Methuen.Google Scholar
Bagnold, R. A. 1956 The flow of cohesionless grains in fluids. Phil. Trans. R. Soc. London A 249, 235297.Google Scholar
Bartholdy, J., Flemming, B. W., Bartholomä, A. & Ernstsen, V. B. 2005 Flow and grain size control of depth-independent simple subaqueous dunes. J. Geophys. Res. 110, F04S16.Google Scholar
Belcher, S. E. & Hunt, J. C. R. 1998 Turbulent flow over hills and waves. Ann. Rev. Fluid Mech. 30, 507538.CrossRefGoogle Scholar
Beljaars, A. C. M. & Taylor, P. A. 1989 On the inner-layer scale height of boundary-layer flow over low hills. Boundary-Layer Met. 49, 433438.CrossRefGoogle Scholar
Benjamin, T. B. 1959 Shearing flow over a wavy boundary. J. Fluid Mech. 6, 161205.CrossRefGoogle Scholar
Best, J. 2005 The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. 110, F04S02.Google Scholar
Bordner, G. L. 1978 Nonlinear analysis of laminar boundary layer flow over a periodic wavy surface. Phys. Fluids 21, 1471–1464.CrossRefGoogle Scholar
Britter, R. E., Hunt, J. C. R. & Richards, K. J. 1981 Air flow over a two-dimensional hill: studies of velocity speed-up, roughness effects and turbulence. Q. J. R. Meteorol. Soc. 107, 91110.CrossRefGoogle Scholar
Caponi, E. A., Fornberg, B., Khight, D. D., McLean, J. W., Saffman, P. G. & Yuen, H. C. 1982 Calculations of laminar viscous flow over a moving wavy surface. J. Fluid Mech. 124, 247262.CrossRefGoogle Scholar
Carling, P. A., Gölz, E., Orr, H. G. & Radecki-Pawlik, A. 2000 The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. I. Sedimentology and morphology. Sedimentology 47, 227252.CrossRefGoogle Scholar
Carling, P. A., Richardson, K. & Ikeda, H. 2005 A flume experiment on the development of subaqueous fine-gravel dunes from a lower-stage plane bed. J. Geophys. Res. 110, F04S05.Google Scholar
Charru, F. 2006 Selection of the ripple length on a granular bed. Phys. Fluids 18, 121508.CrossRefGoogle Scholar
Charru, F. & Hinch, E. J. 2000 ‘Phase diagram’ of interfacial instabilities in a two-layer Couette flow and mechanism for the long-wave instability. J. Fluid Mech. 414, 195223.CrossRefGoogle Scholar
Charru, F., Larrieu, E., Dupont, J.-B. & Zenith, R. 2008 Motion of a particle near a rough wall in a viscous shear flow. J. Fluid Mech. 570, 431453.CrossRefGoogle Scholar
Charru, F., Mouilleron-Arnould, H. & Eiff, O. 2004 Erosion and deposition of particles on a bed sheared by a viscous flow. J. Fluid Mech. 519, 5580.CrossRefGoogle Scholar
Claudin, P. & Andreotti, B. 2006 A scaling law for aeolian dunes on Mars, Venus, Earth, and for sub-aqueous ripples. Earth Pla. Sci. Lett. 252, 3044.CrossRefGoogle Scholar
Claussen, M. 1988 On the inner-layer scale height of boundary-layer flow over low hills. Boundary-Layer Met. 44, 411413.CrossRefGoogle Scholar
Coleman, S. E. & Eling, B. 2000 Sand wavelets in laminar open-channel flows. J. Hydraul. Res. 38, 331338.CrossRefGoogle Scholar
Coleman, S. E., Fedele, J. J. & Garcia, M. H. 2003 Closed-conduit bed-form initiation and development. J. Hydraul. Engng 129, 956965.CrossRefGoogle Scholar
Coleman, S. E. & Fenton, J. D. 2000 Potential-flow instability theory and alluvial stream bed forms. J. Fluid Mech. 418, 101117.CrossRefGoogle Scholar
Coleman, S. E. & Melville, B. W. 1994 Bed-form development. J. Hydraul. Engng 120, 544560.CrossRefGoogle Scholar
Coleman, S. E. & Melville, B. W. 1996 Initiation of bed forms on a flat sand bed. J. Hydraul. Engng 122, 301310.CrossRefGoogle Scholar
Colombini, M. 2004 Revisiting the linear theory of sand dune formation. J. Fluid Mech. 502, 116.CrossRefGoogle Scholar
Colombini, M. & Stocchino, A. 2005 Coupling or decoupling bed and flow dynamics: fast and slow sediment waves at high Froude numbers. Phys. Fluids 17, 036602.CrossRefGoogle Scholar
Einstein, H. A. 1950 The bed load function for sedimentation in open channel flows. Tech. Rep. 1026, 169.Google Scholar
Elbelrhiti, H., Claudin, C. & Andreotti, B. 2005 Field evidence for surface wave induced instability of sand dunes. Nature 437, 720723.CrossRefGoogle ScholarPubMed
Engelund, F. 1970 Instability of erodible beds. J. Fluid Mech. 42, 225244.CrossRefGoogle Scholar
Engelund, F. & Fredsøe, J. 1982 Sediment ripples and dunes. Ann. Rev. Fluid Mech. 14, 1337.CrossRefGoogle Scholar
FernandezLuque, R. Luque, R. & van Beek, R. 1976 Erosion and transport of bed-load sediment. J. Hydraul. Res. 14, 127144.CrossRefGoogle Scholar
Finnigan, J. J., Raupach, M. R., Bradley, E. F. & Aldis, G. K. 1990 A wind tunnel study of turbulent flow over a two-dimensional ridge. Boundary-Layer Met. 50, 277317.CrossRefGoogle Scholar
Fredsøe, J. 1974 On the development of dunes in erodible channels. J. Fluid Mech. 64, 116.CrossRefGoogle Scholar
Gong, W. & Ibbetson, A. 1989 A wind tunnel study of turbulent flow over model hills. Boundary-Layer Met. 49, 113148.CrossRefGoogle Scholar
Gradowczyk, M. H. 1970 Wave propagation and boundary instability in erodible-bed channels. J. Fluid Mech. 33, 93112.CrossRefGoogle Scholar
Guy, H., Simons, D. & Richardson, E. 1966 Summary of alluvial channel data from flume experiments, 1956–61. U.S. Geol. Survey Prof. Paper 462-I, 196.Google Scholar
Gyr, A. & Schmid, A. 1989 The different ripple formation mechanism. J. Hydraul. Res. 27, 6174.CrossRefGoogle Scholar
Harbor, D. J. 1998 Dynamics of bedforms in the lower Mississippi River. J. Sedim. Res. 68, 750762.CrossRefGoogle Scholar
Hayashi, T. 1970 Formation of dunes and antidunes in open channels. J. Hydraul. Div. 96, 357366.CrossRefGoogle Scholar
Hersen, P., Douady, S. & Andreotti, B. 2002 Relevant length scale of barchan dunes. Phys. Rev. Lett. 89, 264301.CrossRefGoogle ScholarPubMed
Hill, H. M., Srinivasan, V. S. & Unny, T. E. 1969 Instability of flat bed in alluvial channels. J. Hydraul. Div. 95, 15451558.CrossRefGoogle Scholar
Hunt, J. C. R., Leibovich, S. & Richards, K. J. 1988 Turbulent shear flows over low hills. Q. J. R. Meteorol. Soc. 114, 14351470.CrossRefGoogle Scholar
Jackson, P. S. & Hunt, J. C. R. 1975 Turbulent wind flow over a low hill. Q. J. R. Meteorol. Soc. 101, 929955.CrossRefGoogle Scholar
Kamphuis, J. W. 1974 Determination of sand roughness for fixed beds. J. Hydraul. Res. 12, 193207.CrossRefGoogle Scholar
Kennedy, J. F. 1963 The mechanics of dunes and antidunes in erodible bed channels. J. Fluid Mech. 16, 521544.CrossRefGoogle Scholar
Kennedy, J. F. 1969 The formation of sediment ripples, dunes and antidunes. Annu. Rev. Fluid Mech. 1, 147168.CrossRefGoogle Scholar
Kobayashi, N. & Madsen, O. S. 1985 Turbulent flows over a wavy bed. J. Geophys. Res. 90, 73237331.CrossRefGoogle Scholar
Kroy, K., Sauermann, G. & Herrmann, H. J. 2002 Minimal model for aeolian sand dunes. Phys. Rev. E 66, 031302.CrossRefGoogle ScholarPubMed
Lagrée, P.-Y. 2003 A triple deck model of ripple formation and evolution. Phys. Fluids 15, 23552368.CrossRefGoogle Scholar
Langlois, V. & Valance, A. 2007 Formation and evolution of current ripples on a flat sand bed under turbulent water flow. Eur. Phys. J. E 22, 201208.CrossRefGoogle ScholarPubMed
Loiseleux, T., Gondret, P., Rabaud, M. & Doppler, D. 2005 Onset of erosion and avalanche for an inclined granular bed sheared by a continuous laminar flow. Phys. Fluids 17, 103304.CrossRefGoogle Scholar
Mantz, P. A. 1978 Bedforms produced by fine, cohesionless, granular and flakey sediments under subcritical water flows. Sedimentology 25, 83103.CrossRefGoogle Scholar
McLean, S. R. 1990 The stability of ripples and dunes. Earth-Science Rev. 29, 131144.CrossRefGoogle Scholar
Meyer-Peter, E. & Müller, R. 1948 Formulas for bed load transport. Report on the 2nd Meeting International Association Hydraulic Structure Research, Stockholm, pp. 39–64.Google Scholar
Parker, G. 1975 Sediment inertia as cause of river antidunes. J. Hydraul. Div. 101, 211221.CrossRefGoogle Scholar
Parsons, D. R., Best, J. L., Orfeo, O., Hardy, R. J., Kostaschuk, R. & Lane, S. N. 2005 Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. J. Geophys. Res. 110, F04S03.Google Scholar
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37, 383413.CrossRefGoogle Scholar
Politi, P. & Misbah, C. 2004 When does coarsening occur in the dynamics of one-dimensional fronts. Phys. Rev. Lett. 92, 090601.CrossRefGoogle ScholarPubMed
Prandtl, L. 1925 Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Ang. Math. Mech. 3, 136139. (After, Bradshaw, P. 1974 Possible origin of Prandt's mixing-length theory. Nature 249, 135–136.)CrossRefGoogle Scholar
Raudkivi, A. J. 2006 Transition from ripples to dunes. J. Hydraul. Engng 132, 13161320.CrossRefGoogle Scholar
Raudkivi, A. J. & Witte, H. H. 1990 Development of bed features. J. Hydraul. Engng 116, 10631079.CrossRefGoogle Scholar
Rauen, W. B., Lin, B. & Falconer, R. A. 2008 Transition from wavelets to ripples in a laboratory flume with a diverging channel. Intl J. Sedim. Res. 23, 112.CrossRefGoogle Scholar
Reynolds, A. J. 1965 Waves on the erodible bed of an open channel. J. Fluid Mech. 22, 113133.CrossRefGoogle Scholar
Reynolds, O. 1874 On the extent and action of the heating surface of steam boilers. Proc. Lit. Phil. Soc. Manchester 14, 712.Google Scholar
Richards, K. J. 1980 The formation of ripples and dunes on an erodible bed. J. Fluid Mech. 99, 597618.CrossRefGoogle Scholar
Richards, K. J. & Taylor, P. A. 1981 A numerical model of flow over sand waves in water of finite depth. Geophys. J. R. Astron. Soc. 65, 103128.CrossRefGoogle Scholar
Robert, A. & Uhlman, W. 2001 An experimental study of the ripple-dune transition. Earth Surf. Process. Landforms 26, 615629.CrossRefGoogle Scholar
Sauermann, G., Kroy, K. & Herrmann, H. J. 2001 Continuum saltation model for sand dunes. Phys. Rev. E 64, 031305.CrossRefGoogle ScholarPubMed
Schlichting, H. & Gersten, K. 2000 Boundary Layer Theory, 8th edn. Springer.CrossRefGoogle Scholar
Smith, J. D. 1970 Stability of a sand bed subjected to a shear flow at low Froude number. J. Geophys. Rev. 75, 59285940.CrossRefGoogle Scholar
Sumer, B. M. & Bakioglu, M. 1984 On the formation of ripples on an erodible bed. J. Fluid Mech. 144, 177190.CrossRefGoogle Scholar
Sykes, R. I. 1980 An asymptotic theory of incompressible turbulent boundary-layer flow over a small bump. J. Fluid Mech. 101, 647670.CrossRefGoogle Scholar
Taylor, P. A. 1977 a Some numerical studies of surface boundary-layer flow above gentle topography. Boundary-Layer Met. 11, 439465.CrossRefGoogle Scholar
Taylor, P. A. 1977 b Numerical studies of neutrally stratified planetary boundary-layer flow above gentle topography. Boundary-Layer Met. 12, 3760.CrossRefGoogle Scholar
Taylor, P. A., Mason, P. J. & Bradley, E. F. 1987 Boundary-layer flow over low hills. Boundary-Layer Met. 39, 107132.CrossRefGoogle Scholar
Tritton, D. J. 1988 Physical Fluid Dynamics. Oxford University Press.Google Scholar
Valance, A. 2005 Formation of ripples over a sand bed submitted to a turbulent shear flow. Eur. Phys. J. B 45, 433442.CrossRefGoogle Scholar
Valance, A. & Langlois, V. 2005 Ripple formation over a sand bed submitted to a laminar shear flow. Eur. Phys. J. B 43, 283294.CrossRefGoogle Scholar
Venditti, J. G., Church, M. A. & Bennett, S. J. 2005 a Morphodynamics of small-scale superimposed sand waves over migrating dune bed forms. Water Resour. Res. 41, W10423.CrossRefGoogle Scholar
Venditti, J. G., Church, M. A. & Bennett, S. J. 2005 b Bed form initiation from a flat sand bed. J. Geophys. Res. 110, F01009.Google Scholar
Weng, W. S., Hunt, J. C. R., Carruthers, D. J., Warren, A., Wiggs, G. F. S., Linvingstone, I. & Castro, I. 1991 Air flow and sand transport over sand dunes. Acta Mechanica 2, 122.CrossRefGoogle Scholar
Wiggs, G. F. S. 2001 Desert dune processes and dynamics. Prog. Phys. Geog. 25, 5379.CrossRefGoogle Scholar
Wilbers, A. W. E. & Ten Brinke, W. B. M. 2003 The response of subaqueous dunes to floods in sand and gravel bed reaches of the Dutch Rhine. Sedimentology 50, 10131034.CrossRefGoogle Scholar
Yalin, M. S. 1963 An expression for bed-load transportation. J. Hydraul. Div. 132, 11591168.Google Scholar
Yalin, M. S. 1977 On the determination of ripple length. J. Hydraul. Div. 103, 439442.CrossRefGoogle Scholar
Yalin, M. S. 1985 On the determination of ripple geometry. J. Hydraul. Engng 111, 11481155.CrossRefGoogle Scholar
Yalin, M. S. & Karahan, E. J. 1979 Inception of sediment transport. J. Hydraul. Div. 105, 14331443.CrossRefGoogle Scholar
Supplementary material: PDF

Fourriere supplementary material

Appendix

Download Fourriere supplementary material(PDF)
PDF 276.2 KB