Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T21:58:29.149Z Has data issue: false hasContentIssue false

Axisymmetric evolution of gravity-driven thin films on a small sphere

Published online by Cambridge University Press:  17 November 2020

Jian Qin
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui230026, PR China
Yu-Ting Xia
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui230026, PR China
Peng Gao*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui230026, PR China State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui230026, PR China
*
Email address for correspondence: [email protected]

Abstract

We study the axisymmetric evolution of a liquid film on a solid sphere governed by gravity, capillarity and viscous forces. The lubrication equations established in spherical coordinates are numerically solved using finite elements and local similarity solutions are obtained. Results show that the evolution behaves differently at early and late stages. At the early stage, the interface evolves in such a way that the capillary effect can be ignored. At the late stage, there emerge four zones from top to bottom: a thin film, a ridge ring, a dimple ring and a pendant drop. Each zone is governed by the balance of different forces, and hence is characterized by an individual physical mechanism. Consequently, the pendant drop is quasi-static, and the film thicknesses of other regions follow different scaling laws. The position of the dimple remains unchanged at the late stage.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bakshi, S., Roisman, I. V. & Tropea, C. 2007 Investigations on the impact of a drop onto a small spherical target. Phys. Fluids 19, 032102.CrossRefGoogle Scholar
Balestra, G., Nguyen, D. M.-P. & Gallaire, F. 2018 Rayleigh–Taylor instability under a spherical substrate. Phys. Rev. Fluids 3, 084005.CrossRefGoogle Scholar
Belousov, A. P. & Belousov, P. Y. 2010 Measuring the thickness of the fluid film moving on a spherical surface. Optoelectron. Instrum. Proc. 46, 601605.CrossRefGoogle Scholar
Benilov, E. S. & Benilov, M. S. 2015 A thin drop sliding down an inclined plate. J. Fluid Mech. 773, 75102.CrossRefGoogle Scholar
Benilov, E. S., Benilov, M. S. & Kopteva, N. 2008 Steady rimming flows with surface tension. J. Fluid Mech. 597, 91118.CrossRefGoogle Scholar
Benilov, E. S., Chapman, S. J., McLeod, J. B., Ockendon, J. R. & Zubkov, V. S. 2010 On liquid films on an inclined plate. J. Fluid Mech. 663, 5369.CrossRefGoogle Scholar
Blake, T. D. & Ruschak, K. J. 1979 A maximum speed of wetting. Nature 282, 489.CrossRefGoogle Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.CrossRefGoogle Scholar
Braun, R. J., Usha, R., McFadden, G. B., Driscoll, T. A., Cook, L. P. & King-Smith, P. E. 2012 Thin film dynamics on a prolate spheroid with application to the cornea. J. Engng Maths 73, 121138.CrossRefGoogle Scholar
Dupont, T. F., Goldstein, R. E., Kadanoff, L. P. & Zhou, S.-M. 1993 Finite-time singularity formation in Hele–Shaw systems. Phys. Rev. E 47, 4182.CrossRefGoogle ScholarPubMed
Emslie, A. G., Bonner, F. T. & Peck, L. G. 1958 Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 29, 858862.CrossRefGoogle Scholar
Gao, P., Li, L., Feng, J. J., Ding, H. & Lu, X.-Y. 2016 Film deposition and transition on a partially wetting plate in dip coating. J. Fluid Mech. 791, 358383.CrossRefGoogle Scholar
de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls and Waves. Springer.CrossRefGoogle Scholar
Hecht, F. 2012 New development in FreeFem++. J. Numer. Math. 20, 251265.CrossRefGoogle Scholar
Hocking, L. M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Maths 36, 5569.CrossRefGoogle Scholar
Howell, P. D. 2003 Surface-tension-driven flow on a moving curved surface. J. Engng Maths 45, 283308.CrossRefGoogle Scholar
Jalaal, M., Seyfert, C. & Snoeijer, J. H. 2019 Capillary ripples in thin viscous films. J. Fluid Mech. 880, 430440.CrossRefGoogle Scholar
Kalliadasis, S., Bielarz, C. & Homsy, G. M. 2000 Steady free-surface thin film flows over topography. Phys. Fluids 12, 18891898.CrossRefGoogle Scholar
Kang, D., Nadim, A. & Chugunova, M. 2016 Dynamics and equilibria of thin viscous coating films on a rotating sphere. J. Fluid Mech. 791, 495518.CrossRefGoogle Scholar
Kang, D., Nadim, A. & Chugunova, M. 2017 Marangoni effects on a thin liquid film coating a sphere with axial or radial thermal gradients. Phys. Fluids 29, 072106.CrossRefGoogle Scholar
Kumar, S. 2015 Liquid transfer in printing processes: liquid bridges with moving contact lines. Annu. Rev. Fluid Mech. 47, 6794.CrossRefGoogle Scholar
Lamstaes, C. & Eggers, J. 2017 Arrested bubble rise in a narrow tube. J. Stat. Phys. 167, 656682.CrossRefGoogle Scholar
Lee, A., Brun, P.-T., Marthelot, J., Balestra, G., Gallaire, F. & Reis, P. M. 2016 Fabrication of slender elastic shells by the coating of curved surfaces. Nat. Commun. 7, 11155.CrossRefGoogle ScholarPubMed
van Limbeek, M. A. J., Sobac, B., Rednikov, A., Colinet, P. & Snoeijer, J. H. 2019 Asymptotic theory for a Leidenfrost drop on a liquid pool. J. Fluid Mech. 863, 11571189.CrossRefGoogle Scholar
Lopes, A. B., Thiele, U. & Hazel, A. L. 2018 On the multiple solutions of coating and rimming flows on rotating cylinders. J. Fluid Mech. 835, 540574.CrossRefGoogle Scholar
Myers, T. G., Charpin, J. P. F. & Chapman, S. J. 2002 The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface. Phys. Fluids 14, 27882803.CrossRefGoogle Scholar
Parkin, I. P. & Palgrave, R. G. 2005 Self-cleaning coatings. J. Mater. Chem. 15, 16891695.CrossRefGoogle Scholar
Pitts, E. 1973 The stability of pendent liquid drops. Part 1. Drops formed in a narrow gap. J. Fluid Mech. 59, 753767.CrossRefGoogle Scholar
Pitts, E. 1974 The stability of pendent liquid drops. Part 2. Axial symmetry. J. Fluid Mech. 63, 487508.CrossRefGoogle Scholar
Quéré, D. 1999 Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31, 347384.CrossRefGoogle Scholar
Reisfeld, B. & Bankoff, S. G. 1992 Non-isothermal flow of a liquid film on a horizontal cylinder. J. Fluid Mech. 236, 167196.CrossRefGoogle Scholar
Roy, R. V., Roberts, A. J. & Simpson, M. E. 2002 A lubrication model of coating flows over a curved substrate in space. J. Fluid Mech. 454, 235261.CrossRefGoogle Scholar
Schwartz, L. W. & Weidner, D. E. 1995 Modeling of coating flows on curved surfaces. J. Engng Maths 29, 91103.CrossRefGoogle Scholar
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.CrossRefGoogle Scholar
Snoeijer, J. H., Andreotti, B., Delon, G. & Fermigier, M. 2007 Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation. J. Fluid Mech. 579, 6383.CrossRefGoogle Scholar
Snoeijer, J. H. & Eggers, J. 2010 Asymptotic analysis of the dewetting rim. Phys. Rev. E 82, 056314.CrossRefGoogle ScholarPubMed
Snoeijer, J. H., Ziegler, J., Andreotti, B., Fermigier, M. & Eggers, J. 2008 Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir. Phys. Rev. Lett. 100, 244502.CrossRefGoogle ScholarPubMed
Stillwagon, L. E. & Larson, R. G. 1988 Fundamentals of topographic substrate leveling. J. Appl. Phys. 63, 52515258.CrossRefGoogle Scholar
Stocker, R. & Hosoi, A. E. 2005 Lubrication in a corner. J. Fluid Mech. 544, 353377.CrossRefGoogle Scholar
Takagi, D. & Huppert, H. E. 2010 Flow and instability of thin films on a cylinder and sphere. J. Fluid Mech. 647, 221238.CrossRefGoogle Scholar
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12, 1473.CrossRefGoogle Scholar
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.CrossRefGoogle Scholar
Wild, J. D. & Potter, O. E. 1972 A falling liquid film on a sphere. Chem. Engng J. 4, 6976.CrossRefGoogle Scholar
Wilson, S. K., Hunt, R. & Duffy, B. R. 2000 The rate of spreading in spin coating. J. Fluid Mech. 413, 6588.CrossRefGoogle Scholar
Xia, Y., Qin, J. & Gao, P. 2020 a Dynamical wetting transition on a chemically striped incline. Phys. Fluids 32, 022101.Google Scholar
Xia, Y., Qin, J. & Mu, K. 2020 b Dynamics of moving contact line on a transversely patterned inclined surface. Phys. Fluids 32, 042101.Google Scholar
Zhu, Y., Liu, H.-R., Mu, K., Gao, P., Ding, H. & Lu, X.-Y. 2017 Dynamics of drop impact onto a solid sphere: spreading and retraction. J. Fluid Mech. 824, R3.CrossRefGoogle Scholar