Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T14:41:28.820Z Has data issue: false hasContentIssue false

Attached cavitation and the boundary layer: experimental investigation and numerical treatment

Published online by Cambridge University Press:  20 April 2006

J. P. Franc
Affiliation:
Institut de Mécanique de Grenoble, Université de Grenoble, B.P. 68, 38402 Saint-Martin-d'Hères, France
J. M. Michel
Affiliation:
Institut de Mécanique de Grenoble, Université de Grenoble, B.P. 68, 38402 Saint-Martin-d'Hères, France

Abstract

Attached cavitation on a wall with continuous curvature is investigated on the basis of experiments carried out on various bodies (circular and elliptic cylinders, NACA 16 012 foil). Visualization of the boundary layer by dye injection at the leading edge shows that a strong interaction exists between attached cavitation and the boundary layer. In particular, it is shown that the cavity does not detach from the body at the minimum pressure point, but behind a laminar separation, even in largely developed cavitating flow. A detachment criterion which takes into account this link between attached cavitation and boundary layer is proposed. It consists of connecting a cavitating potential-flow calculation and a boundary-layer calculation. Among all the theoretically possible detachment points, the actual detachment point is chosen to be the one for which the complete calculation predicts a laminar separation just upstream. This criterion, applied to the NACA foil, leads to a prediction which is in good agreement with experimental results.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerberg, R. C. 1970 Boundary layer separation at a free streamline. Part 1. Two-dimensional flow. J. Fluid Mech. 44, 211225.Google Scholar
Ackerberg, R. C. 1975 The effects of capillarity on free streamline separation. J. Fluid Mech. 70, 333352.Google Scholar
Alexander, A. J. 1968 An investigation of the relationship between flow separation and cavitation. N.P.L. Unpublished Report, Nov. 1968.
Arakeri, V. H. 1975 Viscous effects on the position of cavitation separation from smooth bodies. J. Fluid Mech. 68, 779799.Google Scholar
Arakeri, V. H. & Acosta, A. J. 1973 Viscous effects in the inception of cavitation on axisymmetric bodies. Trans. ASME I: J. Fluids Engng 95, 519527Google Scholar
Armstrong, A. H. 1953 Abrupt and smooth separation in plane and axisymmetric flow. Mem. Arm. Res. Est. G.B. No. 22/53.
Arnal, D., Habiballah, M. & Coustols, E. 1984 Théorie de l'instabilite laminaire et critère de transition en écoulement bi- et tri-dimensionnel. Recherche Aerospatiale, Vol. 1984-2.
Brennen, C. 1970 Cavity surface wave patterns and general appearance. J. Fluid Mech. 44, 3350.Google Scholar
Dodu, J., Duport, J. & Michel, J. M. 1968 Le tunnel hydrodynamique de l'Université de Grenoble. Houille Blanche 7, 697702.Google Scholar
Knapp, R. T., Daily, J. W. & Hammitt, F. G. 1970 Cavitation. McGraw-Hill.
Le Goff, J. P. & Lecoffre, Y. 1982 Nuclei and cavitation. In Proc. of the 14th Symp. on Naval Hydrodynamics. Ann Arbor, pp. 215242. National Academy Press.
Michel, J. M. 1977 Wakes of developed cavitation. J. Ship Res. 21, 225238.Google Scholar
Michel, R. 1959 Critère de transition et amplification des ondes d'instabilité laminaire. Recherche Aéronautique 70.
Oba, R., Ikohagi, T. & Yasu, S. 1980 Supercavitating cavity observations by means of laser velocimeter. Trans. ASME I: J. Fluids Engng 102, 433438Google Scholar
Oluenziel, D. M. 1982 A new instrument in cavitation research: the cavitation susceptibility meter. Trans ASME I: J. Fluids Engng 104, 136142Google Scholar
Pellone, C. & Rowe, A. 1981 Supercavitating hydrofoils in nonlinear theory. In Proc. of the 3rd Intl Conf. on Numerical Ship Hydrodynamics, Paris, pp. 399412.
Rowe, A. & Michel, J. M. 1975 Two-dimensional base-vented hydrofoils near a free surface. Influence of the ventilation number. Trans. ASME I: J. Fluids Engng 97, 465474Google Scholar
Schlichting, H. 1960 Boundary Layer Theory, 4th edn. McGraw-Hill.
Van Der Meulen, J. H. J. 1978 A holographic study of the influence of boundary layer and surface characteristics on incipient and developed cavitation on axisymmetric bodies. In Proc. of the 12th Symp. on Naval Hydrodynamics, Washington, pp. 433451. National Academy of Sciences.
Van Der Meulen, J. H. J. 1980 Boundary layer and cavitation studies of Naca 16 012 and Naca 4412 hydrofoils. In Proc. of the 13th Symp. on Naval Hydrodynamics, Tokyo, pp. 195219.
Van Dyke 1970 Perturbation Methods in Fluid Mechanics. Academic.
Villat, H. 1914 Sur la validité des solutions de certains problèmes d'hydrodynamique. J. Math. Pures Appl. 6, 10.Google Scholar
Werle, H. 1980 Transition et décollement: visualisations au tunnel hydrodynamique de l'ONERA. Recherche Aérospatiale 5, 331345.Google Scholar
Wu, T. Y. T. 1972 Cavity and wake flows. Ann Rev. Fluid Mech. 4, 243284.Google Scholar