Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T15:14:23.674Z Has data issue: false hasContentIssue false

The asymptotic equivalence of fixed heat flux and fixed temperature thermal boundary conditions for rapidly rotating convection

Published online by Cambridge University Press:  04 November 2015

Michael A. Calkins
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Kevin Hale
Affiliation:
Harvey Mudd College, Claremont, CA 91711, USA
Keith Julien
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
David Nieves
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Derek Driggs
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Philippe Marti
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA

Abstract

The influence of fixed temperature and fixed heat flux thermal boundary conditions on rapidly rotating convection in the plane layer geometry is investigated for the case of stress-free mechanical boundary conditions. It is shown that whereas the leading-order system satisfies fixed temperature boundary conditions implicitly, a double boundary layer structure is necessary to satisfy the fixed heat flux thermal boundary conditions. The boundary layers consist of a classical Ekman layer adjacent to the solid boundaries that adjust viscous stresses to zero, and a layer in thermal wind balance just outside the Ekman layers that adjusts the normal derivative of the temperature fluctuation to zero. The influence of these boundary layers on the interior geostrophically balanced convection is shown to be asymptotically weak, however. Upon defining a simple rescaling of the thermal variables, the leading-order reduced system of governing equations is therefore equivalent for both boundary conditions. These results imply that any horizontal thermal variation along the boundaries that varies on the scale of the convection has no leading-order influence on the interior convection, thus providing insight into geophysical and astrophysical flows where stress-free mechanical boundary conditions are often assumed.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossman, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.Google Scholar
Aurnou, J. M., Calkins, M. A., Cheng, J. S., Julien, K., King, E. M., Nieves, D., Soderlund, K. M. & Stellmach, S. 2015 Rotating convective turbulence in Earth and planetary cores. Phys. Earth Planet. Inter 246, 5271.CrossRefGoogle Scholar
Calkins, M. A., Julien, K. & Marti, P. 2013 Three-dimensional quasi-geostrophic convection in the rotating cylindrical annulus with steeply sloping endwalls. J. Fluid Mech. 732, 214244.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Chapman, C. J. & Proctor, M. R. E. 1980 Nonlinear Rayleigh–Bénard convection between poorly conducting boundaries. J. Fluid Mech. 101, 759782.Google Scholar
Cheng, J. S., Stellmach, S., Ribeiro, A., Grannan, A., King, E. M. & Aurnou, J. M. 2015 Laboratory–numerical models of rapidly rotating convection in planetary cores. Geophys. J. Intl 201, 117.CrossRefGoogle Scholar
Davies, C., Gubbins, D. & Jimack, P. 2009 Convection in a rotating spherical fluid shell with an imposed laterally varying thermal boundary condition. J. Fluid Mech. 641, 335358.Google Scholar
Dowling, T. E. 1988 Rotating Rayleigh–Bénard convection with fixed flux boundaries. In Summer Study Program in Geophysical Fluid Dynamics, Woods Hole Oceanographic Institution Technical Report, pp. 230247.Google Scholar
Ecke, R. E. & Niemela, J. J. 2014 Heat transport in the geostrophic regime of rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 113, 114301.Google Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Heard, W. B. & Veronis, G. 1971 Asymptotic treatment of the stability of a rotating layer of fluid with rigid boundaries. Geophys. Fluid Dyn. 2 (1), 299316.Google Scholar
Hide, R. 1964 The viscous boundary layer at the free surface of a rotating baroclinic fluid. Tellus 16, 523529.Google Scholar
Horn, S. & Shishkina, O. 2015 Toroidal and poloidal energy in rotating Rayleigh–Bénard convection. J. Fluid Mech. 762, 232255.Google Scholar
Hurle, D. T. J., Jakeman, E. & Pike, E. R. 1967 On the solution of the Bénard problem with boundaries of finite conductivity. Proc. R. Soc. Lond. A 296, 469475.Google Scholar
Johnston, H. & Doering, C. R. 2009 Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett. 102, 064501.Google Scholar
Julien, K., Knobloch, E., Rubio, A. M. & Vasil, G. M. 2012a Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett. 109, 254503.Google Scholar
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996 Rapidly rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 322, 243273.Google Scholar
Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E. 2012b Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106 (4–5), 392428.Google Scholar
King, E. M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J. M. 2009 Boundary layer control of rotating convection systems. Nature 457, 301304.CrossRefGoogle ScholarPubMed
Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2006 Heat flux intensification by vortical flow localization in rotating convection. Phys. Rev. E 74, 056306.CrossRefGoogle ScholarPubMed
Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2013 The structure of the sidewall boundary layers in confined rotating Rayleigh–Bénard convection. J. Fluid Mech. 727, 509532.Google Scholar
Liu, Y. & Ecke, R. E. 1997 Heat transport scaling in turbulent Rayleigh–Bénard convection: effects of rotation and Prandtl number. Phys. Rev. Lett. 79 (12), 22572260.Google Scholar
Nayfeh, A. H. 2008 Perturbation Methods. John Wiley & Sons.Google Scholar
Nieves, D., Rubio, A. M. & Julien, K. 2014 Statistical classification of flow morphology in rapidly rotating Rayleigh–Bénard convection. Phys. Fluids 26, 086602.Google Scholar
van der Poel, E. P., Ostilla-Mónico, R., Verzicco, R. & Lohse, D. 2014 Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh–Bénard convection. Phys. Rev. E 90, 013017.Google Scholar
Sakuraba, A. & Roberts, P. H. 2009 Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nature Geosci. 2, 802805.Google Scholar
Sakuraba, A. & Roberts, P. H. 2011 On thermal driving of the geodynamo. In The Earth’s Magnetic Interior (ed. Petrovskỳ, E., Ivers, D., Harinarayana, T. & Herrero-Bervera, E.), pp. 117129. Springer.Google Scholar
Schmitz, S. & Tilgner, A. 2010 Transitions in turbulent rotating Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 104 (5–6), 481489.Google Scholar
Sprague, M., Julien, K., Knobloch, E. & Werne, J. 2006 Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551, 141174.Google Scholar
Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J. S., Ribeiro, A., King, E. M. & Aurnou, J. M. 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113, 254501.Google Scholar
Stevens, R. J. A. M., Clercx, H. J. H. & Lohse, D. 2013 Heat transport and flow structure in rotating Rayleigh–Bénard convection. Eur. J. Mech. (B-Fluids) 40, 4149.Google Scholar
Takehiro, S.-I., Ishiwatari, M., Nakajima, K. & Hayashi, Y.-Y. 2002 Linear stability of thermal convection in rotating systems with fixed heat flux boundaries. Geophys. Astrophys. Fluid Dyn. 96 (6), 439459.Google Scholar
Vorobieff, P. & Ecke, R. E. 2002 Turbulent rotating convection: an experimental study. J. Fluid Mech. 458, 191218.Google Scholar
Zhang, K. & Roberts, P. H. 1997 Thermal inertial waves in a rotating fluid layer: exact and asymptotic solutions. Phys. Fluids 9 (7), 19801987.Google Scholar
Zhang, K. K. & Gubbins, D. 1993 Convection in a rotating spherical fluid shell with inhomogeneous temperature boundary condition at infinite Prandtl number. J. Fluid Mech. 250, 209.Google Scholar