Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T19:00:08.512Z Has data issue: false hasContentIssue false

Asymmetric flows and instabilities in symmetric ducts with sudden expansions

Published online by Cambridge University Press:  12 April 2006

W. Cherdron
Affiliation:
Sonderforschungsbereich 80, Ausbreitungs-und Transportvorgänge in Strömungen, Universität Karlsruhe, Germany
F. Durst
Affiliation:
Sonderforschungsbereich 80, Ausbreitungs-und Transportvorgänge in Strömungen, Universität Karlsruhe, Germany
J. H. Whitelaw
Affiliation:
Sonderforschungsbereich 80, Ausbreitungs-und Transportvorgänge in Strömungen, Universität Karlsruhe, Germany Permanent address: Mechanical Engineering Department, Imperial College, London.

Abstract

Flow visualization and laser-Doppler anemometry have been used to provide a detailed description of the velocity characteristics of the asymmetric flows which form in symmetric, two-dimensional, plane, sudden-expansion geometries. The flow and geometry boundary conditions which give rise to asymmetric flow are indicated, and the reason for the phenomenon is shown to lie in disturbances generated at the edge of the expansion and amplified in the shear layers. The spectral distributions of the fluctuations in velocity are quantitatively related to the dimensions of the two unequal regions of flow recirculation. It is also shown that the intensity of fluctuating energy in these low Reynolds number flows can be larger than that in corresponding turbulent flows.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, D. E. & Kline, S. J. 1962 Experimental investigations of subsonic turbulent flow over single and double backward facing steps. J. Basic Engng, Trans. A.S.M.E. D 84, 317.Google Scholar
Back, L. H. & Roshko, E. J. 1972 Shear-layer flow regions, wave instabilities and reattach-ment lengths downstream of an abrupt circular channel expansion. J. Appl. Mech. 39, 677.Google Scholar
Beavers, G. S. & Wilson, T. A. 1970 Vortex growth in jets. J. Fluid Mech. 44, 97.Google Scholar
Clements, R. R. & Maull, D. J. 1975 The representation of sheets of vorticity by discrete vortices. Prog. Aerospace Sci. 16, 129.Google Scholar
Betchov, R. & Criminale, W. O. 1967 Stability of Parallel Flows. Academic Press.
Durst, F., Melling, A. & Whitelaw, J. H. 1974 Low Reynolds number flow over a plane symmetrical sudden expansion. J. Fluid Mech. 64, 111.Google Scholar
Durst, F., Melling, A. & Whitelaw, J. H. 1976 Principles and Practice of Laser-Doppler Anemometry. Academic Press.
Goldstein, R. J., Eriksen, V. L., Olsen, R. M. & Eckert, E. R. G. 1970 Laminar separation, reattachment and transition of the flow over a downstream-facing step. J. Basic Engng, A.S.M.E. D 92, 732.Google Scholar
Hama, F. R. 1962 Streaklines in a perturbed shear flow. Phys. Fluids 5, 644.Google Scholar
Iribarne, A., Frantisak, F., Hummel, R. L. & Smith, J. H. 1972 An experimental study of instabilities and other flow properties of a laminar pipe jet. A.I.Ch.E. J. 18, 689.Google Scholar
Lavan, Z. & Shavit, G. 1971 Recirculation patterns in confined laminar jet mixing. Israel J. Tech. 9, 51.Google Scholar
Macagno, E. O. & Hung, T. K. 1967 Computational and experimental study of a captive annular eddy. J. Fluid Mech. 28, 43.Google Scholar
Martin, W. W. 1974 Anwendung der hydrodynamischen Stabilitätstheorie auf die Schwingung von Schützen. Doktor-Ingenieur dissertation, Universität Karlsruhe.
Martin, W. W., Naudascher, E. & Padmanabhan, M. 1975 Fluid-dynamic excitation involving flow instability. Proc. A.S.C.E. 101 (HY6), 681.Google Scholar
Michalke, A. 1971 Instabilität eines kompressiblen runden Freistrahls unter Berücksichtigung des Einflusses der Strahlgrenzschichtdichte. Z. Flugwiss. 19, 319.Google Scholar
Mueller, T. J. & Leary, R. A. 1970 Physical and numerical experiments in laminar incompressible separating and reattaching flows. A.I.A.A. Paper no. 70–763.Google Scholar
Oka, S. & Kostic, Z. 1971 Influence of the wall proximity on the hot-wire velocity measurements. Boris Kidric Inst. Nucl. Sci. Rep. no. 1BK-1021. (See also Proc. Int. Summer School on Heat and Mass Transfer in Boundary Layers, Beograd, 1970.)Google Scholar
Rockwell, D. O. & Niccolls, W. O. 1972 Natural breakdown of planar jets. A.S.M.E. Paper no. 72-FE-5.Google Scholar
Sato, H. 1959 The stability and transition of a two-dimensional jet. J. Fluid Mech. 7, 53.Google Scholar
Smyth, R. 1976 Experimental study of turbulence in plane separated flows. Proc. ISL/AGARD Workshop on Laser Anemometry, p. 233.Google Scholar
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237.Google Scholar