Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T22:06:30.835Z Has data issue: false hasContentIssue false

Anomalous dispersion in chemically heterogeneous media induced by long-range disorder correlation

Published online by Cambridge University Press:  13 February 2012

D. Bolster*
Affiliation:
Environmental Fluid Dynamics Laboratories, Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN 46556, USA
M. Dentz
Affiliation:
Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), 08034 Barcelona, Spain
*
Email address for correspondence: [email protected]

Abstract

We study transport in an idealized porous medium characterized by a spatially varying retardation factor, which models linear instantaneous chemical adsorption of a solute. Using a stochastic modelling approach, we study the impact of disorder correlation on the large-scale dispersion behaviour. We consider short, long-range and intermediate-range disorder correlations, and demonstrate that (truncated) power-law correlation causes anomalous dispersion, even in the presence of weak heterogeneity. We identify different preasymptotic and asymptotic regimes of anomalous dispersion that shed new light on the disorder and local-scale transport mechanisms leading to non-Fickian behaviour. The analytical results are complemented by numerical random walk particle tracking simulations, which are found to be in good agreement with the derived dispersion behaviour. We conclude the paper by deriving an effective transport equation for this system, which can be shown to be tied to the family of continuous-time random walk models.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover.Google Scholar
2. Adams, E. E. & Gelhar, L. W. 1992 Field study of dispersion in a heterogeneous aquifer, 2, spatial moments analysis. Water Resour. Res. 28 (12), 32933307.CrossRefGoogle Scholar
3. Andricevic, R. & Cvetkovic, V. 1998 Relative dispersion for solute flux in aquifers. J. Fluid Mech. 361, 145174.CrossRefGoogle Scholar
4. Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235, 67.Google Scholar
5. Attinger, S., Dentz, M. & Kinzelbach, W. 2004 Exact transverse macro dispersion coefficients for transport in heterogeneous porous media. Stoch. Environ. Res. Risk Assess. 18, 915.CrossRefGoogle Scholar
6. Attinger, S., Dentz, M., Kinzelbach, H. & Kinzelbach, W. 1999 Temporal behaviour of a solute cloud in a chemically heterogeneous porous medium. J. Fluid Mech. 386, 77104.CrossRefGoogle Scholar
7. de Barros, F. J. & Rubin, Y. 2011 Modelling of block-scale macrodispersion as a random function. J. Fluid Mech. 676, 514545.CrossRefGoogle Scholar
8. Batchelor, G. K. 1949 Diffusion in a field of homogeneous turbulence I, Eulerian analysis. Austral. J. Sci. Res. 2, 437450.Google Scholar
9. Bellin, A., Rinaldo, A., Bosma, W. J. P., van der Zee, S. E. A. T. M. & Rubin, Y. 1993 Linear equilibrium adsorbing solute transport in physically and chemically heterogeneous porous formations: 1. Analytical solutions. Water Resour. Res. 29, 40194030.CrossRefGoogle Scholar
10. Bellin, A., Salandin, P. & Rinaldo, A. 1992 Simulation of dispersion in heterogeneous porous formations: statistics, first-order theories, convergence of computations. Water Resour. Res. 28, 22112227.CrossRefGoogle Scholar
11. Benson, D. A., Wheatcraft, S. W. & Meerschaert, M. M. 2000 Application of a fractional advection–dispersion equation. Water Resour. Res. 36, 14031412.CrossRefGoogle Scholar
12. Berkowitz, B., Cortis, A., Dentz, M. & Scher, H. 2006 Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003.Google Scholar
13. Berkowitz, B., Kosakowski, G., Margolin, G. & Scher, H. 2005 Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media. Ground Water 39, 593604.CrossRefGoogle Scholar
14. Bolster, D., Dentz, M. & LeBorgne, T. 2009 Solute dispersion in channels with periodically varying apertures. Phys. Fluids 21, 056601.CrossRefGoogle Scholar
15. Bouchaud, J.-P. & Georges, A. 1990 Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127293.CrossRefGoogle Scholar
16. Brenner, H. 1980 Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. Lond. Ser. A 297, 81133.Google Scholar
17. Chrysikopoulos, C. V., Kitanidis, P. K. & Roberts, P. V. 1990 Analysis of one-dimensional solute transport through porous media with spatially variable retardation factor. Water Resour. Res. 26, 437446.CrossRefGoogle Scholar
18. Cvetkovic, V., Dagan, G. & Cheng, H. 1998 Contaminant transport in aquifers with spatially variable hydraulic and sorption properties. Proc. R. Soc. Lond. A 454, 21732207.CrossRefGoogle Scholar
19. Dagan, G. 1984 Solute transport in hetereogeneous porous formations. J. Fluid Mech. 145, 151177.Google Scholar
20. Dagan, G. 1990 Transport in heterogeneous porous formations: spatial moments, ergodicity, and effective dispersion. Water Resour. Res. 26, 12811290.Google Scholar
21. Dagan, G. 1991 Dispersion of a passive solute in non-ergodic transport by steady velocity fields in heterogeneous formations. J. Fluid Mech. 233, 197210.CrossRefGoogle Scholar
22. Dagan, G. 1994 The significance of heterogeneity of evolving scales and of anomalous diffusion to transport in porous formations. Water Resour. Res. 30, 33273336.CrossRefGoogle Scholar
23. Dagan, G. & Neuman, S. P.  (Eds) 1997 Subsurface Flow and Transport. Cambridge University Press.CrossRefGoogle Scholar
24. Dentz, M. & Berkowitz, B. 2003 Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. Water Resour. Res. 39, 1111.Google Scholar
25. Dentz, M. & Bolster, D. 2010 Distribution- versus correlation-induced anomalous transport in quenched random velocity fields. Phys. Rev. Lett. 105, 244301.CrossRefGoogle ScholarPubMed
26. Dentz, M., Bolster, D. & LeBorgne, T. 2009 Concentration statistics for transport in random media. Phys. Rev. E 80, 010101.CrossRefGoogle ScholarPubMed
27. Dentz, M. & Castro, A. 2009 Effective transport dynamics in porous media with heterogeneous retardation properties. Geophys. Res. Lett. 35, L03403.Google Scholar
28. Dentz, M., Kinzelbach, H., Attinger, S. & Kinzelbach, W. 2000 Temporal behaviour of a solute cloud in a heterogeneous porous medium, 1, point-like injection. Water Resour. Res. 36 (12), 35913604.CrossRefGoogle Scholar
29. Dentz, M., Kinzelback, H., Attinger, S. & Kinzelbach, W. 2003 Numerical studies of the transport behaviour of a passive solute in a two-dimensional incompressible random flow field. Phys. Rev. E 67, 046306.CrossRefGoogle Scholar
30. Di Federico, V. & Zhang, Y. K. 1999 Solute transport in heterogeneous porous media with long-range correlations. Water Resour. Res. 35, 31853191.Google Scholar
31. Edwards, D. & Brenner, H. 1993 Macrotransport Processes. Butterworth Heinemann.Google Scholar
32. Fiori, A. 2001 On the influence of local dispersion in solute transport through formations with evolving scales of heterogeneity. Water Resour. Res. 37, 235242.Google Scholar
33. Gelhar, L. W. 1992 Stochastic Subsurface Hydrology. Prentice-Hall.Google Scholar
34. Gelhar, L., Welty, C. & Rehfeldt, K. A. 1992 A critical review of data on field scale dispersion in aquifers. Water Resour. Res. 28, 19551974.CrossRefGoogle Scholar
35. Gill, W. N. & Sankarasubramanian, R. 1970 Exact analysis of unsteady convective diffusion. Proc. R. Soc. Lond. A 316, 341.Google Scholar
36. Glimm, J. & Sharp, D. H. 1991 A random field model for anomalous diffusion in heterogeneous porous media. J. Stat. Phys. 62, 415424.Google Scholar
37. Grathwohl, P. 1998 Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics. Springer.CrossRefGoogle Scholar
38. Herrick, M. G., Benson, D. A., Meerschaert, M. M. & McCall, K. R. 2002 Hydraulic conductivity, velocity, and the order of the fractional dispersion derivative in a highly heterogeneous system. Water Resour. Res. 38 (11), 1227.CrossRefGoogle Scholar
39. Jarman, K. D. & Tartakovsky, A. M. 2008 Divergence of solutions to solute transport moment equations. Geophys. Res. Lett. 35, L15401.CrossRefGoogle Scholar
40. Jones, S. W. & Young, W. R. 1994 Shear dispersion and anomalous diffusion by chaotic advection. J. Fluid Mech. 280, 149172.Google Scholar
41. Kenkre, V. M., Montroll, E. W. & Schlesinger, F. M. 1973 Generalized master equations for continuous time random walks. J. Stat. Phys. 9, 45.CrossRefGoogle Scholar
42. Kinzelbach, W. 1987 Methods for the simulation of pollutant transport in ground water: a model comparison. In Proceedings of the NWWA Conference on Solving Ground Water Problems with Models, pp. 656675. National Water Well Association.Google Scholar
43. Kitanidis, P. K. 1988 Prediction by the method of moments of transport in heterogeneous formations. J. Hydrol. 102, 453473.CrossRefGoogle Scholar
44. Koch, D. L. & Brady, J. F. 1985 Dispersion in fixed beds. J. Fluid Mech. 154, 399427.CrossRefGoogle Scholar
45. Koch, D. L. & Brady, J. F. 1987 A non-local description of advection–diffusion with application to dispersion in porous media. J. Fluid Mech. 180, 387403.CrossRefGoogle Scholar
46. Latini, M. & Bernoff, A. J. 2001 Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. 441, 399411.CrossRefGoogle Scholar
47. Lawrence, A. E. & Rubin, Y. 2007 Block-effective macrodispersion for numerical simulations of sorbing solute transport in heterogeneous porous formations. Adv. Water Resour. 30, 12721285.CrossRefGoogle Scholar
48. LeBorgne, T., Dentz, M. & Carrera, J. 2008 Lagrangian statistical model for transport in highly heterogeneous velocity fields. Phys. Rev. Lett. 101, 090601.CrossRefGoogle Scholar
49. Lenz, R. D. & Kumar, S. 2007 Competitive displacement of thin liquid films on chemically patterned substrates. J. Fluid Mech. 571, 3357.CrossRefGoogle Scholar
50. Levy, M. & Berkowitz, B. 2003 Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol. 64, 203226.CrossRefGoogle ScholarPubMed
51. Lunati, I., Attinger, S. & Kinzelbach, W. 2002 Macrodispersivity for transport in arbitrary nonuniform flow fields: asymptotic and preasymptotic results. Water Resour. Res. 38 (10), 1187.CrossRefGoogle Scholar
52. Matheron, G. & de Marsily, G. 1980 Is transport in porous media always diffusive? A counter example. Water Resour. Res. 16, 901.CrossRefGoogle Scholar
53. Miralles-Wilhelm, F. & Gelhar, L. W. 1996 Stochastic analysis of sorption macrokinetics in heterogeneous aquifers. Water Resour. Res. 32, 15411549.CrossRefGoogle Scholar
54. Moroni, M. & Cushman, J. H. 2001 Statistical mechanics with three-dimensional particle tracking velocimetry experiments in the study of anomalous dispersion. I. Theory. Phys. Fluids 13, 75.CrossRefGoogle Scholar
55. Neuman, S. P. 1990 Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour. Res. 26, 17491758.Google Scholar
56. Neuman, S. P. & Tartakovsky, D. M. 2009 Perspective on theories of anomalous transport in heterogeneous media. Adv. Water Res. 32, 670680.Google Scholar
57. Rajaram, H. & Gelhar, L. W. 1995 Plume-scale dependent dispersion in aquifers with a wide range of scales of heterogeneity. Water Resour. Res. 31 (10), 24692482.Google Scholar
58. Risken, H. 1992 The Fokker–Planck Equation. Springer.Google Scholar
59. Rubin, Y., Sun, A., Maxwell, R. & Bellin, A. 1999 The concept of block-effective macrodispersivity and a unified approach for grid-scale- and plume-scale-dependent transport. J. Fluid Mech. 395, 161180.CrossRefGoogle Scholar
60. Sanchez-Vila, X. & Bolster, D. 2009 An analytical approach to transient homovalent cation exchange problems. J. Hydrol. 378, 281289.CrossRefGoogle Scholar
61. Silliman, S. E. & Simpson, E. S. 1987 Laboratory evidence of the scale effect in dispersion of solutes in porous media. Water Resour. Res. 23 (8), 16671673.Google Scholar
62. Tartakovsky, D. M. & Winter, C. L. 2008 Uncertain future of hydrogeology. ASCE J. Hydrol. Engrg 13 (1), 3739.CrossRefGoogle Scholar
63. Trefry, M. G., Ruan, F. P. & McLaughlin, D. 2003 Numerical simulations of preasymptotic transport in heterogeneous porous media: departures from the Gaussian limit. Water Resour. Res. 39, 1063.CrossRefGoogle Scholar
64. White, B. L. & Nepf, H. M. 2003 Scalar transport in random cylinder arrays at moderate Reynolds number. J. Fluid Mech. 487, 4379.CrossRefGoogle Scholar