Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T07:00:50.531Z Has data issue: false hasContentIssue false

Anisotropic scaling lengths of colloidal monolayers near a water–air interface

Published online by Cambridge University Press:  20 October 2020

Na Li*
Affiliation:
State Key Laboratory of Physics and Department of Physics, Fudan University, Shanghai200433, PR China College of Information and Communication, National University of Defense Technology, Xian, PR China
Wei Zhang
Affiliation:
School of Materials and Physics, China University of Mining and Technology, Xuzhou221116, PR China
Zehui Jiang
Affiliation:
Department of Physics, Harbin Institute of Technology, Harbin150001, PR China
Wei Chen*
Affiliation:
State Key Laboratory of Physics and Department of Physics, Fudan University, Shanghai200433, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Near-interface colloidal monolayers are often used as model systems for research on hydrodynamics in biophysics systems and in the chemical industry. Using microrheological methods, the correlated diffusion of particles is experimentally measured in colloidal monolayers near a water–air interface. The results show that the scaling lengths $({\chi _{||}},{\chi _ \bot })$ of such colloidal monolayers are anisotropic in two orthogonal directions within the monolayer, which are parallel and perpendicular to the line connecting the centres of a particle pair. The former $({\chi _{||}})$ is the Saffman length of the monolayer, while the latter $({\chi _ \bot })$ is a function of both the Saffman length and the radius of the colloids. The size of the colloids is involved in ${\chi _ \bot }$ but not ${\chi _{||}}$, which reflects the discrete nature of the monolayer in the transverse direction and the continuous nature of the monolayer in the longitudinal direction. From the scaling lengths, the viscosities of the colloidal monolayers are obtained, which agree with those obtained from the single-particle diffusion coefficients. The influence of the boundary condition imposed by the nearby interface on the hydrodynamic interactions is in a power-law behaviour of the distance z.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Begam, N., Chandran, S., Sprung, M. & Basu, J. K. 2015 Anomalous viscosity reduction and hydrodynamic interactions of polymeric nanocolloids in polymers. Macromolecules 48 (18), 66466651.CrossRefGoogle Scholar
Berryman, J. G. 1983 Random close packing of hard-spheres and disks. Phys. Rev. A 27 (2), 10531061.CrossRefGoogle Scholar
Bickel, T. 2007 Hindered mobility of a particle near a soft interface. Phys. Rev. E 75, 041403.CrossRefGoogle Scholar
Cai, L. H., Panyukov, S. & Rubinstein, M. 2011 Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 44 (19), 78537863.CrossRefGoogle ScholarPubMed
Caruso, F., Grieser, F., Murphy, A., Thistlethwaite, P., Urquhart, R., Almgren, M. & Wistus, E. 1991 Determination of lateral diffusion-coefficients in air water monolayers by fluorescence quenching measurements. J. Am. Chem. Soc. 113 (13), 48384843.CrossRefGoogle Scholar
Chen, W. & Tong, P. 2008 Short-time self-diffusion of weakly charged silica spheres at aqueous interfaces. Europhys. Lett. 84 (2), 28003.CrossRefGoogle Scholar
Crocker, J., Valentine, M., Weeks, E., Gisler, T., Kaplan, P., Yodh, A. G. & Weitz, D. 2000 Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett. 85, 888891.CrossRefGoogle ScholarPubMed
Cui, B., Diamant, H., Lin, B. & Rice, S. A. 2004 Anomalous hydrodynamic interaction in a quasi-two-dimensional suspension. Phys. Rev. Lett. 92 (25), 258301.CrossRefGoogle Scholar
Di Leonardo, R., Keen, S., Ianni, F., Leach, J., Padgett, M. J. & Ruocco, G. 2008 Hydrodynamic interactions in two dimensions. Phys. Rev. E 78 (3), 031406.CrossRefGoogle ScholarPubMed
Di Rienzo, C., Piazza, V., Gratton, E., Beltram, F. & Cardarelli, F. 2014 Probing short-range protein Brownian motion in the cytoplasm of living cells. Nat. Commun. 5 (1), 5891.CrossRefGoogle ScholarPubMed
Dufresne, E., Squires, T., Brenner, M. & Grier, D. 2000 Hydrodynamic coupling of two Brownian spheres to a planar surface. Phys. Rev. Lett. 85, 33173320.CrossRefGoogle ScholarPubMed
Fischer, T. M., Dhar, P. & Heinig, P. 2006 The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558, 451475.CrossRefGoogle Scholar
Frydel, D. & Diamant, H. 2010 Long-range dynamic correlations in confined suspensions. Phys. Rev. Lett. 104, 248302.CrossRefGoogle ScholarPubMed
Gardel, M. L., Valentine, M. T. & Weitz, D. A. 2005 Microscale Diagnostic Techniques. Springer.Google Scholar
Hamrock, B. J., Schmid, S. R. & Jacobson, B. O. 2004 Fundamentals of Fluid Film Lubrication. Marcei Dekker.CrossRefGoogle Scholar
He, W., Song, H., Su, Y., Geng, L., Ackerson, B. J., Peng, H. B. & Tong, P. 2016 Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane. Nat. Commun. 7 (1), 11701.CrossRefGoogle ScholarPubMed
Huang, K. & Szlufarska, I. 2015 Effect of interfaces on the nearby Brownian motion. Nat. Commun. 6 (1), 8558.CrossRefGoogle ScholarPubMed
Huang, S., Gawlitza, K., von Klitzing, R., Steffen, W. & Auernhammer, G. K. 2017 Structure and rheology of microgel monolayers at the water/oil interface. Macromolecules 50 (9), 36803689.CrossRefGoogle Scholar
Jones, R. B., Felderhof, B. U. & Deutch, J. M. 1975 Diffusion of polymers along a fluid-fluid interface. Macromolecules 8 (5), 680684.CrossRefGoogle Scholar
Krieger, I. M. & Dougherty, T. J. 1959 A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3 (1), 137152.CrossRefGoogle Scholar
Levine, A. & Lubensky, T. 2000 One- and two-particle microrheology. Phys. Rev. Lett. 85, 17741777.CrossRefGoogle ScholarPubMed
McWhirter, J. L., Noguchi, H. & Gompper, G. 2009 Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl Acad. Sci. USA 106 (15), 60396043.CrossRefGoogle ScholarPubMed
Misiunas, K., Pagliara, S., Lauga, E., Lister, J. R. & Keyser, U. F. 2015 Nondecaying hydrodynamic interactions along narrow channels. Phys. Rev. Lett. 115 (3), 038301.CrossRefGoogle ScholarPubMed
Nägele, G., Kellerbauer, O., Krause, R. & Klein, R. 1993 Hydrodynamic effects in polydisperse charged colloidal suspensions at short times. Phys. Rev. E 47 (4), 25622574.CrossRefGoogle ScholarPubMed
O'Hern, C. S., Langer, S. A., Liu, A. J. & Nagel, S. R. 2002 Random packings of frictionless particles. Phys. Rev. Lett. 88 (7), 075507.CrossRefGoogle ScholarPubMed
Oppenheimer, N. & Diamant, H. 2009 Correlated diffusion of membrane proteins and their effect on membrane viscosity. Biophys. J. 96 (8), 30413049.CrossRefGoogle ScholarPubMed
Oppenheimer, N. & Diamant, H. 2010 Correlated dynamics of inclusions in a supported membrane. Phys. Rev. E 82 (4), 041912.CrossRefGoogle Scholar
Ouali, L. & Pefferkorn, E. 1996 Hydrodynamic thickness of interfacial layers obtained by adsorption of a charged diblock copolymer on a selective surface from aqueous solutions. Macromolecules 29 (2), 686692.CrossRefGoogle Scholar
Parigi, G., Rezaei-Ghaleh, N., Giachetti, A., Becker, S., Fernandez, C., Blackledge, M., Griesinger, C., Zweckstetter, M. & Luchinat, C. 2014 Long-range correlated dynamics in intrinsically disordered proteins. J. Am. Chem. Soc. 136 (46), 1620116209.CrossRefGoogle ScholarPubMed
Park, B. J. & Lee, D. 2015 Dynamically tuning particle interactions and assemblies at soft interfaces: reversible order-disorder transitions in 2D particle monolayers. Small 11 (35), 45604567.CrossRefGoogle ScholarPubMed
Prasad, V., Koehler, S. A. & Weeks, E. R. 2006 Two-particle microrheology of quasi-2D viscous systems. Phys. Rev. Lett. 97 (17), 176001.CrossRefGoogle ScholarPubMed
Ramadurai, S., Holt, A., Krasnikov, V., van den Bogaart, G., Killian, J. A. & Poolman, B. 2009 Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 131 (35), 1265012656.CrossRefGoogle ScholarPubMed
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1992 Colloidal Dispersions. Cambridge University Press.Google Scholar
Saffman, P. G. 1976 Brownian-motion in thin sheets of viscous-fluid. J. Fluid Mech. 73, 593602.CrossRefGoogle Scholar
Saffman, P. G. & Delbrück, M. 1975 Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72 (8), 31113113.CrossRefGoogle ScholarPubMed
Shani, I., Beatus, T., Bar-Ziv, R. H. & Tlusty, T. 2014 Long-range orientational order in two-dimensional microfluidic dipoles. Nat. Phys. 10 (2), 140144.CrossRefGoogle Scholar
Sickert, M., Rondelez, F. & Stone, H. A. 2007 Single-particle Brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. Europhys. Lett. 79 (6), 66005.CrossRefGoogle Scholar
Vivek, S. & Weeks, E. R. 2015 Measuring and overcoming limits of the Saffman-Delbruck model for soap film viscosities. PLoS ONE 10 (3), e0121981.CrossRefGoogle ScholarPubMed
Wang, C.-J., Ackerman, D. M., Slowing, I. I. & Evans, J. W. 2014 Langevin and Fokker-Planck analyses of inhibited molecular passing processes controlling transport and reactivity in nanoporous materials. Phys. Rev. Lett. 113 (3), 038301.CrossRefGoogle ScholarPubMed
Wang, D., Yordanov, S., Paroor, H. M., Mukhopadhyay, A., Li, C. Y., Butt, H. J. & Koynov, K. 2011 a Probing diffusion of single nanoparticles at water-oil interfaces. Small 7 (24), 35023507.CrossRefGoogle ScholarPubMed
Wang, G., Prabhakar, R. & Sevick, E. 2009 Hydrodynamic mobility of an optically trapped colloidal particle near fluid-fluid interfaces. Phys. Rev. Lett. 103, 248303.CrossRefGoogle ScholarPubMed
Wang, G. M., Prabhakar, R., Gao, Y. X. & Sevick, E. M. 2011 b Micro-rheology near fluid interfaces. J. Opt. 13 (4), 044009.CrossRefGoogle Scholar
Wille, A., Valmont, F., Zahn, K. & Maret, G. 2002 Shear modulus of two-dimensional colloidal crystals. Europhys. Lett. 57 (2), 219225.CrossRefGoogle Scholar
Zhang, W., Chen, S., Li, N., Zhang, J. & Chen, W. 2013 a Universal scaling of correlated diffusion of colloidal particles near a liquid-liquid interface. Appl. Phys. Lett. 103 (15), 154102.CrossRefGoogle Scholar
Zhang, W., Li, N., Bohinc, K., Tong, P. & Chen, W. 2013 b Universal scaling of correlated diffusion in colloidal monolayers. Phys. Rev. Lett. 111 (16), 168304.CrossRefGoogle ScholarPubMed
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material

Download Li et al. supplementary material(File)
File 54.7 KB