Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:42:02.602Z Has data issue: false hasContentIssue false

Analysis of singular inertial modes in a spherical shell: the slender toroidal shell model

Published online by Cambridge University Press:  31 July 2002

M. RIEUTORD
Affiliation:
Observatoire Midi-Pyrénées, 14 av. E. Belin, F-31400 Toulouse, France Institut Universitaire de France
L. VALDETTARO
Affiliation:
Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy
B. GEORGEOT
Affiliation:
Laboratoire de Physique Quantique IRSAMC, Université Paul Sabatier, 118, Route de Narbonne F-31062 Toulouse Cedex 4, France

Abstract

We derive the asymptotic spectrum (as the Ekman number E → 0) of axisymmetric inertial modes when the problem is restricted to two dimensions. We show that the damping rate of such modes scales with the square root of the Ekman number and that the width of the shear layers of the eigenfunctions scales with E1/4. The eigenfunctions obey a Schrödinger equation with a quadratic potential; we provide the analytical expression for eigenvalues (frequency and damping rate). These results validate the picture that attractors act like a potential well, trapping inertial waves which resist confinement owing to viscosity. Using three-dimensional numerical solutions, we show that the results can be applied to equatorially trapped modes in a thin spherical shell; in fact, these two-dimensional solutions give the first step (the zeroth order) of a perturbative approach to three-dimensional solutions in a spherical shell. Our method is applicable in a straightforward way to any other container where bi-dimensionality dominates.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)