Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:19:35.656Z Has data issue: false hasContentIssue false

Analysis and flamelet modelling for spray combustion

Published online by Cambridge University Press:  10 October 2008

YUYA BABA
Affiliation:
Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25 Showa-machi, Kanazawa-ku Yokohama, Kanagawa 236-0001, [email protected]
RYOICHI KUROSE
Affiliation:
Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25 Showa-machi, Kanazawa-ku Yokohama, Kanagawa 236-0001, [email protected]

Abstract

The validity of a steady-flamelet model and a flamelet/progress-variable approach for gaseous and spray combustion is investigated by a two-dimensional direct numerical simulation (DNS) of gaseous and spray jet flames, and the combustion characteristics are analysed. A modified flamelet/progress-variable approach, in which total enthalpy rather than product mass fraction is chosen as a progress variable, is also examined. DNS with an Arrhenius formation, in which the chemical reaction is directly solved in the physical flow field, is performed as a reference to validate the combustion models. The results show that the diffusion flame is dominant in the gaseous diffusion jet flame, whereas diffusion and premixed flames coexist in the spray jet flame. The characteristics of the spray flame change from premixed–diffusion coexistent to diffusion-dominant downstream. Comparisons among the results from DNS with various combustion models show the modified flamelet/progress-variable approach to be superior to the other combustion models, particularly for the spray flame. Where the behaviour of the gaseous total enthalpy is strongly affected by the energy transfer (i.e. heat transfer and mass transfer) from the dispersed droplet, and this effect can be accounted for only by solving the conservation equation of the total enthalpy. However, even the DNS with the modified flamelet/progress-variable approach tends to underestimate the gaseous temperature in the central region of the spray jet flame. To increase the prediction accuracy, a combustion model for the partially premixed flame for the spray flame is necessary.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramzon, B. & Sirignano, W. A. 1989 Droplet vaporization model for spray combustion calculations. Intl J. Heat Mass Transfer 32, 16051618.CrossRefGoogle Scholar
Apte, S. V., Gorokhovski, M. & Moin, P. 2003 LES of atomizing spray with stochastic modeling of secondary breakup. Intl J. Multiphase Flow 29, 15031522.CrossRefGoogle Scholar
Bellan, J. & Summerfield, M. 1978 Theoretical examination of assumptions commonly used for the gas phase surrounding a burning droplet. Combust. Flame 33, 107122.CrossRefGoogle Scholar
Chiu, H. H., Kim, H. Y. & Croke, E. J. 1982 Internal group combustion of liquid droplets. Proc. Combust. Inst. 19, 971980.CrossRefGoogle Scholar
Chiu, H. H. & Liu, T. M. 1977 Group combustion of liquid droplets. Combust. Sci. Technol. 17, 127131.CrossRefGoogle Scholar
Cook, A. W., Riley, J. J. & Kosály, G. 1997 A laminar flamelet approach to subgrid-scale chemistry in turbulent flows. Combust. Flame 109, 332341.CrossRefGoogle Scholar
Domingo, P., Vervisch, L. & Bray, K. 2002 Partially premixed flamelets in LES of nonpremixed turbulent combustion. Combust. Theory Modelling 6, 529551.CrossRefGoogle Scholar
Domingo, P., Vervisch, L. & Réveillon, J. 2005 DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combust. Flame 140, 172195.CrossRefGoogle Scholar
Ham, F., Apte, S., Iaccarino, G., Wu, X., Herrmann, M., Constantinescu, G., Mahesh, K. & Moin, P. 2003 Unstructured LES of reacting multiphase flows in realistic gas turbine combustors. Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford University, pp. 139–160.Google Scholar
Hollmann, C. & Gutheil, E. 1998 Flamelet-modeling of turbulent spray diffusion flames based on a laminar spray flame library. Combust. Sci. Technol. 135, 175192.CrossRefGoogle Scholar
Jiménez, J., Liñán, A., Rogers, M. M. & Higuera, F. J. 1997 A priori testing of subgrid models for chemically reacting non-premixed turbulent shear flows. J. Fluid Mech. 349, 149171.CrossRefGoogle Scholar
Kee, R. J., Dixon-Lewis, G., Warnaz, J., Coltrin, M. E. & Miller, J. A. 1986 A fortran computer code package for evaluation of gas-phase multi-component transport properties. Sandia Report SAND86-8246.Google Scholar
Kee, R. J., Rupley, F. M. & Miller, J. A. 1989 CHEMKIN-II: A FORTRAN chemical kinetics package for the analysis of gas phase chemical kinetics. Sandia Report SAND89-8009B.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59, 308323.CrossRefGoogle Scholar
Kurose, R., Desjardins, O., Nakamura, M., Akamatsu, F. & Pitsch, H. 2004 Numerical simulations of spray flames. Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford University, pp. 269–280.Google Scholar
Kurose, R. & Komori, S. 1999 Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech. 384, 183206.CrossRefGoogle Scholar
Kurose, R. & Makino, H. 2003 Large eddy simulation of a solid-fuel jet flame. Combust. Flame 135, 116.CrossRefGoogle Scholar
Kurose, R., Makino, H., Komori, S., Nakamura, M., Akamatsu, F. & Katsuki, M. 2003 Effects of outflow from the surface of a sphere on drag, shear lift, and scalar diffusion. Phys. Fluids 15, 23382351.CrossRefGoogle Scholar
Leonard, B. P. 1979 A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Engng. 19, 5998.CrossRefGoogle Scholar
Miller, R. S. & Bellan, J. 1999 Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream. J. Fluid Mech. 384, 293338.CrossRefGoogle Scholar
Miller, R. S., Harstad, J. & Bellan, J. 1998 Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. Intl J. Multiphase Flow 24, 10251055.CrossRefGoogle Scholar
Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90124.CrossRefGoogle Scholar
Nakamura, M., Akamatsu, F., Kurose, R. & Katsuki, M. 2005 Combustion mechanism of liquid fuel spray in gaseous flame. Phys. Fluids 17, 123301.CrossRefGoogle Scholar
Nicoud, F. 2000 Conservative high-order finite-difference schemes for low-Mach number flows. J. Comput. Phys. 158, 7197.CrossRefGoogle Scholar
Peters, N. 1984 Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319339.CrossRefGoogle Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.CrossRefGoogle Scholar
Pierce, C. D. 2001 Progress-variable approach for large-eddy simulation of turbulent combustion. Mech. Engng. Dept Rep. TF-80. Stanford University.Google Scholar
Pierce, C. D. & Moin, P. 2004 Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 7397.CrossRefGoogle Scholar
Pitsch, H. 2000 Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames. Combust. Flame 123, 358374.CrossRefGoogle Scholar
Pitsch, H. & Duchamp de Lageneste, L. 2002 Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29, 20012008.CrossRefGoogle Scholar
Pitsch, H. & Peters, N. 1998 A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114, 2640.CrossRefGoogle Scholar
Pitsch, H. & Steiner, H. 2000 Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12, 25412554.CrossRefGoogle Scholar
Réveillon, J. & Vervisch, L. 2005 Analysis of weakly turbulent dilute-spray flames and spray combustion regimes. J. Fluid Mech. 537, 317347.CrossRefGoogle Scholar
Watanabe, H., Kurose, R., Hwang, S. & Akamatsu, F. 2007 Characteristics of flamelet in spray flames formed in a laminar counterflow. Combust. Flame 148, 234248.CrossRefGoogle Scholar
Watanabe, H., Kurose, R., Komori, S. & Pitsch, H. 2008 Effects of radiation on spray flame characteristics and soot formation. Combust. Flame 152, 213.CrossRefGoogle Scholar
Westbrook, C. K. & Dryer, F. L. 1984 Chemical kinetic modeling of hydrocarbon combustion. Prog. Energy Combust. Sci. 10, 157.CrossRefGoogle Scholar
Yamashita, H., Shimada, M. & Takeno, T. 1996 A numerical study on flamestability at the transition point of jet diffusion flames. Proc. Combust. Inst. 26, 2734.CrossRefGoogle Scholar