Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T06:05:42.363Z Has data issue: false hasContentIssue false

An orientational order transition in a sheared suspension of anisotropic particles

Published online by Cambridge University Press:  12 December 2016

Navaneeth K. Marath
Affiliation:
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560 064, India
Ruchir Dwivedi
Affiliation:
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560 064, India
Ganesh Subramanian*
Affiliation:
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560 064, India
*
Email address for correspondence: [email protected]

Abstract

Under Stokesian conditions, a neutrally buoyant non-Brownian spheroid in simple shear flow rotates indefinitely in any of a one-parameter family of closed (Jeffery) orbits characterized by an orbit constant $C$. The limiting values, $C=0$ and $C=\infty$, correspond to spinning and tumbling modes respectively. Hydrodynamics alone does not determine the distribution of spheroid orientations across Jeffery orbits in the absence of interactions, and the rheology of a dilute suspension of spheroids remains indeterminate. A combination of inertia and stochastic orientation fluctuations eliminates the indeterminacy. The steady-state Jeffery-orbit distribution arising from a balance of inertia and thermal fluctuations is shown to be of the Boltzmann equilibrium form, with a potential that depends on $C$, the particle aspect ratio ($\unicode[STIX]{x1D705}$), and a dimensionless shear rate ($Re\,Pe_{r}$, $Re$ and $Pe_{r}$ being the Reynolds and rotary Péclet numbers), and therefore lends itself to a novel thermodynamic interpretation in $C{-}\unicode[STIX]{x1D705}{-}Re\,Pe_{r}$ space. In particular, the transition of the potential from a single to a double-well structure, below a critical $\unicode[STIX]{x1D705}$, has similarities to a thermodynamic phase transition, and the small-$C$ and large-$C$ minima are therefore identified with spinning and tumbling phases. The hysteretic dynamics within the two-phase tumbling–spinning envelope renders the rheology sensitively dependent on the precise shear rate history, the signature in simple shear flow being a multivalued viscosity at a given shear rate. The tumbling–spinning transition identified here is analogous to the coil–stretch transition in the polymer physics literature. It should persist under more general circumstances, and has implications for the suspension stress response in inhomogeneous shearing flows.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amini, H., Lee, W. & Carlo, D. D. 2014 Inertial microfluidic physics. Lab on a Chip 14, 27392761.CrossRefGoogle ScholarPubMed
Batchelor, G. K. & Green, J. T. 1972a The determination of the bulk stress in a suspension of spherical particles to order c 2 . J. Fluid Mech. 56, 401427.CrossRefGoogle Scholar
Batchelor, G. K. & Green, J. T. 1972b The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56, 375400.CrossRefGoogle Scholar
Beck, V. A. & Shaqfeh, E. S. G. 2006 Ergodicity breaking and conformational hysteresis in the dynamics of a polymer tethered at a surface stagnation point. J. Chem. Phys. 124 (9), 094902.CrossRefGoogle Scholar
Brady, J. F. & Morris, J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348, 103139.CrossRefGoogle Scholar
Brown, A. B. D. & Rennie, A. R. 2001 Images of shear-induced phase separation in a dispersion of hard nanoscale discs. Chem. Engng Sci. 56, 29993004.CrossRefGoogle Scholar
Caro, C. G., Pedley, T. J., Schroter, R. C. & Seed, W. A. 2012 The Mechanics of the Circulation. Cambridge University Press.Google Scholar
Chandrasekhar, S. 1943 Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15 (1), 189.CrossRefGoogle Scholar
Cheng, X., Mccoy, J. H., Israelachvili, J. N. & Cohen, I. 2011 Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333 (6047), 12761279.CrossRefGoogle ScholarPubMed
Claeys, I. L. & Brady, J. F. 1993 Suspensions of prolate spheroids in Stokes flow. Part 3. Hydrodynamic transport properties of crystalline dispersions. J. Fluid Mech. 251, 479500.CrossRefGoogle Scholar
Dabade, V., Marath, N. K. & Subramanian, G. 2015 Effects of inertia and viscoelasticity on sedimenting anisotropic particles. J. Fluid Mech. 778, 133188.CrossRefGoogle Scholar
Dabade, V., Marath, N. K. & Subramanian, G. 2016 The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow. J. Fluid Mech. 791, 631703.CrossRefGoogle Scholar
De Gennes, P. G. 1974 Coil–stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 60 (12), 50305042.CrossRefGoogle Scholar
Derakhshandeh, B., Kerekes, R. J., Hatzikiriakos, S. G. & Bennington, C. P. J. 2011 Rheology of pulp fibre suspensions: a critical review. Chem. Engng Sci. 66, 34603470.CrossRefGoogle Scholar
Einarsson, J., Candelier, F., Lundell, F., Angilella, J. & Mehlig, B. 2015 Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids 27 (6), 063301.CrossRefGoogle Scholar
Ennis, G. J., Okagawa, A. & Mason, S. G. 1978 Memory impairment in flowing suspensions. II. Experimental results. Can. J. Chem. 56 (22), 28242832.CrossRefGoogle Scholar
Harlen, O. G. & Koch, D. L. 1997 Orientational drift of a fibre suspended in a dilute polymer solution during oscillatory shear flow. J. Non-Newton. Fluid Mech. 73 (1), 8193.CrossRefGoogle Scholar
Hecht, F. 2012 New development in Freefem + +. J. Numer. Math. 20 (3–4), 251265.Google Scholar
Hinch, E. J. 1974 Mechanical models of dilute polymer solutions for strong flows with large polymer deformations. Proc. Coll. Intl CNRS Polym. Lubrification 233, 241247.Google Scholar
Hinch, E. J. & Leal, L. G. 1972 The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52, 683712.CrossRefGoogle Scholar
Hogan, R. J., Tian, L., Brown, P. R. A., Westbrook, C. D., Heymsfield, A. J. & Eastment, J. D. 2012 Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Met. Clim. 51, 655671.CrossRefGoogle Scholar
Ivanov, Y., Van de Ven, T. G. M. & Mason, S. G. 1982 Damped oscillations in the viscosity of suspensions of rigid rods. I. Monomodal suspensions. J. Rheol. 26 (2), 213230.CrossRefGoogle Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Kao, S. V., Cox, R. G. & Mason, S. G. 1977 Streamlines around single spheres and trajectories of pairs of spheres in two-dimensional creeping flows. Chem. Engng Sci. 32, 15051515.CrossRefGoogle Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Krishnamurthy, D.2014 Heat transfer from drops in shearing flows and collective motion in micro-scale swimmer suspensions. Master’s thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.Google Scholar
Larson, R. G. 1988 Constitutive Equations for Polymer Melts and Solutions. Butterworths.Google Scholar
Larson, R. G. 2005 The rheology of dilute solutions of flexible polymers: progress and problems. J. Rheol. 49 (1), 170.CrossRefGoogle Scholar
Leahy, B. D., Cheng, X., Ong, D. C., Liddell-Watson, C. & Cohen, I. 2013 Enhancing rotational diffusion using oscillatory shear. Phys. Rev. Lett. 110 (22), 228301.CrossRefGoogle ScholarPubMed
Leal, L. G. 1975 The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech. 69 (02), 305337.CrossRefGoogle Scholar
Leal, L. G. & Hinch, E. J. 1971 The effect of weak Brownian rotations on particles in shear flow. J. Fluid Mech. 46, 685703.CrossRefGoogle Scholar
Lekkerkerker, H. N. W. & Vroege, G. J. 2012 Liquid crystal phase transitions in suspensions of mineral colloids: new life from old roots. Phil. Trans. R. Soc. Lond. A 371, 263.Google Scholar
Masaeli, M., Sollier, E., Amini, H., Mao, W., Camacho, K., Doshi, N., Mitragotri, S., Alexeev, A. & Carlo, D. D. 2012 Continuous inertial focussing and separation of particles by shape. Phys. Rev. X 2, 031017.Google Scholar
Michot, L. J., Bihannic, I., Maddi, S., Funari, S. S., Baravian, C., Levitz, P. & Davison, P. 2006 Liquid-crystalline aqueous clay suspensions. Proc. Natl Acad. Sci. USA 103, 1610116104.CrossRefGoogle ScholarPubMed
Mueller, S., Llewellin, E. W. & Mader, H. M. 2011 The effect of particle shape on suspension viscosity and implications for magmatic flows. Geophys. Res. Lett. 38, L13316.CrossRefGoogle Scholar
Okagawa, A., Cox, R. G. & Mason, S. G. 1973 The kinetics of flowing dispersions. VII. Oscillatory behavior of rods and discs in shear flow. J. Colloid Interface Sci. 45, 303329.CrossRefGoogle Scholar
Okagawa, A. & Mason, S. G. 1974 Particle behavior in shear and electric fields. VII. Orientation distributions of cylinders. J. Colloid Interface Sci. 47 (2), 568587.CrossRefGoogle Scholar
van Olphen, H. 1963 An Introduction to Clay Colloid Chemistry. Wiley.Google Scholar
Petrich, M. P., Chaouche, M., Koch, D. L. & Cohen, C. 2000 Oscillatory shear alignment of a non-Brownian fiber in a weakly elastic fluid. J. Non-Newton. Fluid Mech. 91 (1), 114.CrossRefGoogle Scholar
Rosén, T., Einarsson, J., Nordmark, A., Aidun, C. K., Lundell, F. & Mehlig, B. 2015 Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers. Phys. Rev. E 92 (6), 063022.CrossRefGoogle ScholarPubMed
Schroeder, C. M., Babcock, H. P., Shaqfeh, E. S. G. & Chu, S. 2003 Observation of polymer conformation hysteresis in extensional flow. Science 301 (5639), 15151519.CrossRefGoogle ScholarPubMed
Schroeder, C. M., Shaqfeh, E. S. G. & Chu, S. 2004 Effect of hydrodynamic interactions on DNA dynamics in extensional flow: simulation and single molecule experiment. Macromolecules 37 (24), 92429256.CrossRefGoogle Scholar
Shaqfeh, E. S. G. 2005 The dynamics of single-molecule DNA in flow. J. Non-Newton. Fluid Mech. 130 (1), 128.CrossRefGoogle Scholar
Subramanian, G. & Brady, J. F. 2004 Multiple-scales analysis of the Fokker–Planck equation for simple shear flow. Physica A 334, 343384.CrossRefGoogle Scholar
Subramanian, G. & Brady, J. F. 2006 Trajectory analysis for non-Brownian inertial suspensions in simple shear flow. J. Fluid Mech. 559, 151203.CrossRefGoogle Scholar
Subramanian, G. & Koch, D. L. 2006a Centrifugal forces alter streamline topology and greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a shear flow. Phys. Rev. Lett. 96, 134503.CrossRefGoogle ScholarPubMed
Subramanian, G. & Koch, D. L. 2006b Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field. Phys. Fluids 18 (7), 073302.CrossRefGoogle Scholar
Subramanian, G. & Koch, D. L. 2007 Heat transfer from a neutrally buoyant sphere in a second-order fluid. J. Non-Newton. Fluid Mech. 144 (1), 4957.CrossRefGoogle Scholar
Vroege, G. J. & Lekkerkerker, H. N. W. 1992 Phase transitions in lyotropic colloidal and polymer liquid crystals. Rep. Prog. Phys. 55, 12411309.CrossRefGoogle Scholar
Supplementary material: File

Marath supplementary material

Marath supplementary material

Download Marath supplementary material(File)
File 96.2 KB