Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:54:44.077Z Has data issue: false hasContentIssue false

An experimental study of laminar displacement flows in narrow vertical eccentric annuli

Published online by Cambridge University Press:  13 April 2010

S. MALEKMOHAMMADI
Affiliation:
Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, Canada, V6T 1Z4
M. CARRASCO-TEJA
Affiliation:
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, Canada, V6T 1Z2
S. STOREY
Affiliation:
Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, Canada, V6T 1Z4
I. A. FRIGAARD*
Affiliation:
Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, Canada, V6T 1Z4 Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, Canada, V6T 1Z2
D. M. MARTINEZ
Affiliation:
Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada, V6T 1Z3
*
Email address for correspondence: [email protected]

Abstract

We present an experimental study of slow laminar miscible displacement flows in vertical narrow eccentric annuli. We demonstrate that for suitable choices of viscosity ratio, density ratio and flow rate, we are able to find steady travelling wave displacements along the length of the annulus, even when strongly eccentric. Small eccentricity, increased viscosity ratio, increased density ratio and slower flow rates all appear to favour a steady displacement for Newtonian fluids. Qualitatively similar effects are found for non-Newtonian fluids, although the role of flow rate is less clear. These results are largely in line with predictions of a Hele-Shaw style of displacement model (Bittleston et al., J. Engng Math., vol. 43, 2002, pp. 229–253). The experiments also reveal interesting phenomena caused largely by secondary flows and dispersion. In the steady displacements, eccentricity drives a strong azimuthal counter-current flow above/below the advancing interface. This advects displacing fluid to the wide side of the annulus, where it focuses in the form of an advancing spike. On the narrow side we have also observed a spike, but only in Newtonian fluid displacements. For unsteady displacements, the azimuthal currents diminish as the interface elongates. With a strong enough yield stress and with a large enough eccentricity, unyielded fluid remains behind on the narrow side of the annulus.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allouche, M., Frigaard, I. A. & Sona, G. 2000 Static wall layers in the displacement of two visco-plastic fluids in a plane channel. J. Fluid Mech. 424, 243277.CrossRefGoogle Scholar
Bittleston, S. H., Ferguson, J. & Frigaard, I. A. 2002 Mud removal and cement placement during primary cementing of an oil well; laminar non-Newtonian displacements in an eccentric Hele-Shaw cell. J. Engng Math. 43, 229253.CrossRefGoogle Scholar
Chen, C.-Y. & Meiburg, E. 1996 Miscible displacements in capillary tubes. Part 2. Numerical simulations. J. Fluid Mech. 326, 5790.CrossRefGoogle Scholar
Couturier, M., Guillot, D. J., Hendriks, H. & Callet, F. 1990 Design rules and associated spacer properties for optimal mud removal in eccentric annuli. Society of Petroleum Engineers, paper number SPE 21594.Google Scholar
Dutra, E., Naccache, M., Souza-Mendes, P., Souto, C., Martins, A. & de Miranda, C. 2004 Analysis of interface between Newtonian and non-Newtonian fluids inside annular eccentric tubes. In Proceedings of ASME-IMECE, November 2004, Anaheim, CA. Paper number 59335.Google Scholar
Escudier, M. P. & Gouldson, I. W. 1995 Concentric annular flow with centrebody rotation of a Newtonian and a shear-thinning liquid. Intl J. Heat Fluid Flow 16, 156162.CrossRefGoogle Scholar
Escudier, M.P., Gouldson, I.W. & Jones, D.M. 1995 Flow of shear-thinning fluids in a concentric annulus. Exp. Fluids 18, 225238.CrossRefGoogle Scholar
Escudier, M. P., Gouldson, I. W., Oliveira, P. J. & Pinho, F. T. 2000 Effects of inner cylinder rotation on laminar flow of a Newtonian fluid through an eccentric annulus. Intl J. Heat Fluid Flow 21, 92103.CrossRefGoogle Scholar
Escudier, M. P., Oliveira, P. J. & Pinho, F. T. 2002 a Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments. Intl J. Heat Fluid Flow 23, 5273.CrossRefGoogle Scholar
Escudier, M. P., Oliveira, P. J., Pinho, F. T. & Smith, S. 2002 b Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments. Exp. Fluids 33, 101111.CrossRefGoogle Scholar
Frigaard, I. A., Scherzer, O. & Sona, G. 2001 Uniqueness and non-uniqueness in the steady displacement of two viscoplastic fluids. ZAMM 81 (2), 99118.3.0.CO;2-Q>CrossRefGoogle Scholar
Gabard, C. 2001 Etude de la stabilité de films liquides sur les parois d'une conduite verticale lors de l'ecoulement de fluides miscibles non-newtoniens. These de l'Universite Pierre et Marie Curie (PhD thesis), Orsay, France.Google Scholar
Gabard, C. & Hulin, J.-P. 2003 Miscible displacements of non-Newtonian fluids in a vertical tube. Eur. Phys. J. E 11, 231241.CrossRefGoogle Scholar
Goyal, N. & Meiburg, E. 2006 Miscible displacements in Hele-Shaw cells: two-dimensional base states and their linear stability. J. Fluid Mech. 558, 329355.CrossRefGoogle Scholar
Goyal, N. & Meiburg, E. 2007 Variable-density miscible displacements in a vertical Hele-Shaw cell: linear stability. J. Fluid Mech. 584, 357372.CrossRefGoogle Scholar
Homsy, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271311.CrossRefGoogle Scholar
Jakobsen, J., Sterri, N., Saasen, A., Aas, B., Kjosnes, I. & Vigen, A. 1991 Displacements in eccentric annuli during primary cementing in deviated wells. Society of Petroleum Engineers, paper number SPE 21686.Google Scholar
Lajeunesse, E. 1999 Déplacement et instabilités de fluides miscibles et immiscibles en cellules de Hele-Shaw. These de l'Universite Pierre et Marie Curie (PhD thesis), Orsay, France.Google Scholar
Lajeunesse, E., Martin, J., Rakotomalala, N. & Salin, D. 1997 3D Instability of miscible displacements in a Hele-Shaw cell. Phys. Rev. Lett. 79, 52545257.CrossRefGoogle Scholar
Lajeunesse, E., Martin, J., Rakotomalala, N. & Salin, D. 2001 The threshold of the instability in miscible displacements in a Hele-Shaw cell at high rates. Phys. Fluids 13 (3), 799801.CrossRefGoogle Scholar
Lajeunesse, E., Martin, J., Rakotomalala, N., Salin, D. & Yortsos, Y. 1999 Miscible displacement in a Hele-Shaw cell at high rates. J. Fluid Mech. 398, 299319.CrossRefGoogle Scholar
Long, P. J. G. 1991 Experimental studies of fluid-fluid displacement in annuli. PhD thesis, Cambridge University Press.Google Scholar
Martin, M., Latil, M. & Vetter, P. 1978 Mud displacement by slurry during primary cementing jobs – predicting optimum conditions. Society of Petroleum Engineers, paper number SPE 7590.Google Scholar
McLean, R. H., Manry, C. W. & Whitaker, W. W. 1966 Displacement mechanics in primary cementing. Society of Petroleum Engineers, paper number SPE 1488.Google Scholar
Naimi, M., Devienne, R. & Lebouché, M. 1990 Étude dynamique et thermique de lecoulement de Couette–Taylor–Poiseuille; cas dun fluide présentant un seuil découlement. Intl J. Heat Mass Transfer 33, 381391.CrossRefGoogle Scholar
Nelson, E. B. & Guillot, D. 2006 Well Cementing, 2nd edn. Schlumberger Educational Services.Google Scholar
Nguyen, Q. D., Deawwanich, T., Tonmukayakul, N., Savery, M. R. & Chin, W. 2008 Flow visualization and numerical simulation of viscoplastic fluid displacements in eccentric annuli. In AIP Conference Proceedings. XVth International Congress on Rheology: The Society of Rheology 80th Annual Meeting, July 7, 2008, vol. 1027, pp. 279–281, Monterey, CA, doi:10.1063/1.2964662.CrossRefGoogle Scholar
Nouar, M., Desaubry, C. & Zenaidi, H. 1998 Numerical and experimental investigation of thermal convection for a thermodependent Herschel–Bulkley fluid in an annular duct with rotating inner cylinder. Eur. J. Mech. B 17, 875900.CrossRefGoogle Scholar
Nouar, M., Devienne, R. & Lebouché, M. 1987 Convection thermique pour lécoulement de Couette avec debit axial: cas dun fluide pseudoplastique. Intl J. Heat Mass Transfer 30, 639647.CrossRefGoogle Scholar
Nouri, J. M., Umur, H. & Whitelaw, J. H. 1993 Flow of Newtonian and non-Newtonian fluids in concentric and eccentric annuli. J. Fluid Mech. 253, 617641.CrossRefGoogle Scholar
Nouri, J. M. & Whitelaw, J. H. 1994 Flow of Newtonian and non-Newtonian fluids in a concentric annulus with rotation of the inner cylinder. J. Fluids Engng 116, 821827.CrossRefGoogle Scholar
Nouri, J. M. & Whitelaw, J. H. 1997 Flow of Newtonian and non-Newtonian fluids in an eccentric annulus with rotation of the inner cylinder. Intl J. Heat Fluid Flow 18, 236246.CrossRefGoogle Scholar
Pelipenko, S. & Frigaard, I. A. 2004 a On steady state displacements in primary cementing of an oil well. J. Engng Math. 48 (1), 126.CrossRefGoogle Scholar
Pelipenko, S. & Frigaard, I. A. 2004 b Two-dimensional computational simulation of eccentric annular cementing displacements. IMA J. Appl. Math. 64 (6), 557583.CrossRefGoogle Scholar
Pelipenko, S. & Frigaard, I. A. 2004 c Visco-plastic fluid displacements in near-vertical narrow eccentric annuli: prediction of travelling wave solutions and interfacial instability. J. Fluid Mech. 520, 343377.CrossRefGoogle Scholar
Petitjeans, P. & Maxworthy, T. 1996 Miscible displacements in capillary tubes. Part 1. Experiments. J. Fluid Mech. 326, 3756.CrossRefGoogle Scholar
Rakotomalala, N., Salin, D. & Watzky, P. 1997 Miscible displacement between two parallel plates: BGK lattice gas simulations. J. Fluid Mech. 338, 277297.CrossRefGoogle Scholar
Schafroth, D., Goyal, N. & Meiburg, E. 2007 Miscible displacements in Hele–Shaw cells: nonmonotonic viscosity profiles. Eur. Phys. J. E 26, 444453.Google Scholar
Scoffoni, J., Lajeunesse, E. & Homsy, G. M. 2001 Interfacial instabilities during displacements of two miscible fluids in a vertical pipe. Phys. Fluids 13 (3), 553556.CrossRefGoogle Scholar
Taylor, G. I. 1961 Deposition of a viscous fluid on the wall of a tube. J. Fluid Mech. 10, 161.CrossRefGoogle Scholar
Tehrani, A., Bittleston, S. H. & Long, P. G. J. 1993 Flow instabilities during annular displacement of one non-Newtonian fluid by another. Exp. Fluids 14, 246256.CrossRefGoogle Scholar
Tehrani, A., Ferguson, J. & Bittleston, S. H. 1992 Laminar displacement in annuli: a combined theoretical and experimental study. Society of Petroleum Engineers, paper number SPE 24569.Google Scholar
Vanaparthy, S. H. & Meiburg, E. 2008 Variable density and viscosity, miscible displacements in capillary tubes. Eur. Phys. J. E 27, 268289.Google Scholar
Vefring, E. H., Bjorkevoll, K. S., Hansen, S. A., Sterri, N., Saevareid, O., Aas, B. & Merlo, A. 1997 Optimization of displacement efficiency during primary cementing. Society of Petroleum Engineers, paper number SPE 39009.Google Scholar
Yang, Z. & Yortsos, Y. C. 1997 Asymptotic solutions of miscible displacements in geometries of large aspect ratio. Phys. Fluids 9 (2), 286298.CrossRefGoogle Scholar
Zhang, J. & Frigaard, I. A. 2006 Dispersion effects in the miscible displacement of two fluids in a duct of large aspect ratio. J. Fluid Mech. 549, 225251.CrossRefGoogle Scholar
Zimmerman, W. B. & Homsy, G. M. 1991 Nonlinear viscous fingering in miscible displacements with anisotropic dispersion. Phys. Fluids 3, 18591872.CrossRefGoogle Scholar