Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T21:54:06.689Z Has data issue: false hasContentIssue false

An experimental study and modelling of roughness effects on laminar flow in microchannels

Published online by Cambridge University Press:  14 December 2007

G. GAMRAT
Affiliation:
Laboratoire des Ecoulements Géophysiques et Industriels, CNRS-UJF-INPG, 1025 rue de la Piscine, BP 53 X, 38041 Grenoble Cedex, France
M. FAVRE-MARINET
Affiliation:
Laboratoire des Ecoulements Géophysiques et Industriels, CNRS-UJF-INPG, 1025 rue de la Piscine, BP 53 X, 38041 Grenoble Cedex, France
S. LE PERSON
Affiliation:
Laboratoire des Ecoulements Géophysiques et Industriels, CNRS-UJF-INPG, 1025 rue de la Piscine, BP 53 X, 38041 Grenoble Cedex, France
R. BAVIÈRE
Affiliation:
Laboratoire des Ecoulements Géophysiques et Industriels, CNRS-UJF-INPG, 1025 rue de la Piscine, BP 53 X, 38041 Grenoble Cedex, France Institut Néel, CNRS, B.P. 166, 34042 Grenoble Cedex 09, France
F. AYELA
Affiliation:
Institut Néel, CNRS, B.P. 166, 34042 Grenoble Cedex 09, France

Abstract

Three different approaches were used in the present study to predict the influence of roughness on laminar flow in microchannels. Experimental investigations were conducted with rough microchannels 100 to 300μm in height (H). The pressure drop was measured in test-sections prepared with well-controlled wall roughness (periodically distributed blocks, relative roughness k* =k/0.5H≈0.15) and in test-sections with randomly distributed particles anchored on the channel walls (k* ≈0.04–0.13). Three-dimensional numerical simulations were conducted with the same geometry as in the test-section with periodical roughness (wavelength L). A one-dimensional model (RLM model) was also developed on the basis of a discrete-element approach and the volume-averaging technique. The numerical simulations, the rough layer model and the experiments agree to show that the Poiseuille number Po increases with the relative roughness and is independent of Re in the laminar regime (Re<2000). The increase in Po observed during the experiments is predicted well both by the three-dimensional simulations and the rough layer model. The RLM model shows that the roughness effect may be interpreted by using an effective roughness height keff. keff/k depends on two dimensionless local parameters: the porosity at the bottom wall; and the roughness height normalized with the distance between the rough elements. The RLM model shows that keff/k is independent of the relative roughness k* at given k/L and may be simply approximated by the law: keff/k = 1 − (c(ϵ)/2π)(L/k) for keff/k>0.2, where c decreases with the porosity ϵ.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alazmi, B. & Vafai, K. 2001 Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Intl J. Heat Mass Transfer 44, 17351749.CrossRefGoogle Scholar
Bavière, R., Ayela, F., LePerson, S. Person, S. & Favre-Marinet, M. 2005 Experimental characterization of water flow through smooth rectangular microchannels. Phys. Fluids 17, 098105, 14.CrossRefGoogle Scholar
Bavière, R., Gamrat, G., Favre-Marinet, M. & LePerson, S. Person, S. 2006 Modelling of laminar flows in rough-wall microchannels. Trans. ASME I: J. Fluids Engng 128, 734741.Google Scholar
Croce, G. & D'Agaro, P. 2004 Numerical analysis of roughness effect on microtube heat transfer. Superlattices Microstruct. 35, 601616.CrossRefGoogle Scholar
Croce, G., D'Agaro, P., Nonino, C. & Zani, F. 2005 Three-dimensional roughness effect on microchannel heat transfer and pressure drop. ECI Intl Conf. on Heat Transfer and Fluid Flow in Microscale, Castelvecchio Pascoli, 25–30 September 2005.Google Scholar
Gamrat, G., Favre-Marinet, M., LePerson, S. Person, S., Bavière, R. & Ayela, F. 2006 Modeling of roughness effect on laminar flow and heat transfer in rectangular microchannels. 13th Intl Heat Transfer Conf. Sydney, August 2006.Google Scholar
Gamrat, G., Favre-Marinet, M. & LePerson, S. Person, S. 2007 Numerical modelling of heat transfer over banks of rods in small Reynolds number cross flow. Intl J. Heat Mass Transfer, in press.CrossRefGoogle Scholar
Gao, P., LePerson, S. Person, S. & Favre-Marinet, M. 2002 Scale effects on hydrodynamics and heat transfer in two-dimensional mini and microchannels. Intl J. Thermal Sci. 41, 10171027.CrossRefGoogle Scholar
Guo, Z. & Li, Z. 2003 Size effect on microscale single – phase flow and heat transfer. Intl J. Heat Mass Transfer 46, 149159.CrossRefGoogle Scholar
Hocking, L. M. 1976 A moving fluid interface on a rough surface. J. Fluid Mech. 76, 801817.CrossRefGoogle Scholar
Hu, Y., Werner, C. & Li, D. 2003 Influence of three-dimensional roughness on pressure-driven flow through microchannels. Trans. ASME I: J. Fluids Engng 125, 871879.Google Scholar
Judy, J., Maynes, D. & Webb, B. W. 2002 Characterization of frictional pressure drop flows through microchannels. Intl J. Heat Mass Transfer 45, 34773489.CrossRefGoogle Scholar
Kandlikar, S. G., Schmitt, D., Carrano, A. L. & Taylor, J. B. 2005 Characterization of surface roughness in single-phase flow in minichannels. Phys. Fluids 17, 100606.CrossRefGoogle Scholar
Kohl, M. J., Abdel-Khalik, S. I., Jeter, S. M. & Sadowski, D. L. 2005 An experimental investigation of microchannel flow with internal pressure measurements. Intl J. Heat Mass Transfer 48, 15181533.CrossRefGoogle Scholar
Koo, J. & Kleinstreuer, C. 2003 Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects. J. Micromech. Microengng 13, 568579.CrossRefGoogle Scholar
Koo, J. & Kleinstreuer, C. 2004 Computational analysis of wall roughness effects for liquid flow in micro-conduits. Trans. ASME I: J. Fluids Engng 126, 19.Google Scholar
Kosar, A., Mishra, C. & Peles, Y. 2005 Laminar flow across a bank of low aspect ratio micro pin fins. Trans. ASME I: J. Fluids Engng 127, 419430.Google Scholar
Li, Z.-X., Du, D.-X. & Guo, Z.-Y. 2003 Experimental study on flow characteristics of liquid in circular microtubes. Microscale Thermophys. Engng 7, 253265.CrossRefGoogle Scholar
Mala, Gh. M. & Li, D. 1999 Flow characteristics of water in microtubes. Intl J. Heat Fluid Flow 20, 142148.CrossRefGoogle Scholar
Martin, A. R., Saltiel, C. & Shyy, W. 1998 Frictional losses and convective heat transfer in sparse, periodic cylinder arrays in cross flow. Intl J. Heat Mass Transfer 41, 23832397.CrossRefGoogle Scholar
Morini, G. L. 2004 Single-phase convective heat transfer in microchannels: a review of experimental results. Intl J. Thermal Sci. 43, 631651.CrossRefGoogle Scholar
Nikuradse, J. 1933 Laws of flow in rough pipes, ‘Strömungsgesetze in rauen Rohren,’ VDI-Forschungsheft 361; Beilage zu ‘Forschung auf dem Gebiete des Ingenieurwesens,’ revised edn B, vol. 4, English trans. NACA T. M. (1950), 1292.Google Scholar
Ochoa-Tapia, J. A. & Whitaker, S. 1995 Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I. Theoretical development. Intl J. Heat Mass Transfer 38, 26352646.CrossRefGoogle Scholar
Papautsky, I., Brazzle, J., Ameel, T. & Frazier, A. B. 1999 Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors Actuators A 73, 101108.CrossRefGoogle Scholar
Pfund, D., Rector, D., Shekarriz, A., Popescu, A. & Welty, J. 2000 Pressure drop measurements in a microchannel. AICHE J. 46, 14961507.CrossRefGoogle Scholar
Phares, D. J. & Smedley, G. T. 2004 A study of laminar flow of polar liquids through circular microtubes. Phys. Fluids 16, 12671272.CrossRefGoogle Scholar
Qu, W., Mala, G. M. & Li, D. 2000 Pressure-driven water flows in trapezoidal silicon microchannels. Intl J. Heat Mass Transfer 43, 353364.CrossRefGoogle Scholar
Sarkar, K. & Prosperetti, A. 1996 Effective boundary conditions for Stokes flow over a rough surface. J. Fluid Mech. 316, 223240.CrossRefGoogle Scholar
Sharp, K. V. & Adrian, R. J. 2004 Transition from laminar to turbulent flow in liquid filled microtubes. Exps Fluids 36, 741747.Google Scholar
Shen, S., Xu, J. L., Zhou, J. J. & Chen, Y. 2006 Flow and heat transfer in microchannels with rough wall surface. Energy Conversion Management 47, 13111325.CrossRefGoogle Scholar
Sobhan, C. B. & Garimella, S. V. 2001 A comparative analysis of studies on heat transfer and fluid flow in microchannels. Microscale Thermophys. Engng 5, 293311.CrossRefGoogle Scholar
Stroock, A. D., Dertinger, S. K, Whitesides, G. M. & Adjari, A. 2002 Patterning flows using grooved surfaces. Analyt. Chem. 74, 53065312.CrossRefGoogle ScholarPubMed
Taylor, R. P., Coleman, H. W. & Hodge, B. K. 1985 Prediction of turbulent rough-wall skin friction using a discrete element approach. Trans. ASME I: J. Fluids Engng 107, 251257.Google Scholar
Tuck, E. O. & Kouzoubov, A. 1995 A laminar roughness condition. J. Fluid Mech. 300, 5970.Google Scholar
Wang, X., Yap, C. & Mujumdar, A. S. 2005 Effects of two-dimensional roughness in flow in microchannels. J. Electron. Packaging 127, 357361.CrossRefGoogle Scholar
Webb, R. L. 1994 Principles of Enhanced Heat Transfer. John Wiley.Google Scholar
Whitaker, S. 1986 Flow in porous media. I: A theoretical derivation of Darcy's law. Transport Porous Media 1, 325.CrossRefGoogle Scholar
Wu, H. Y. & PingCheng, P. Cheng, P. 2003 An experimental study of convective heat transfer in silicon microchannels with different surface conditions. Intl J. Heat Mass Transfer 46, 25472556.CrossRefGoogle Scholar