Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T22:16:01.525Z Has data issue: false hasContentIssue false

An experimental investigation on the interaction of hydraulic jumps formed by two normal impinging circular liquid jets

Published online by Cambridge University Press:  15 October 2007

R. P. KATE
Affiliation:
Department of Mechanical Engineeringx Indian Institute of Technology, Kharagpur – 721302, India
P. K. DAS
Affiliation:
Department of Mechanical Engineeringx Indian Institute of Technology, Kharagpur – 721302, India
SUMAN CHAKRABORTY
Affiliation:
Department of Mechanical Engineeringx Indian Institute of Technology, Kharagpur – 721302, India

Abstract

The flow field due to two normal impinging liquid jets is different from the flow field associated with a single normal impinging liquid jet, and even from the flow field around two normal impinging compressible fluid jets. Depending on the spacing between the two jets and their relative strengths, different kinds of hydraulic jump interactions are possible, resulting in a variety of flow patterns. The present study experimentally elucidates the jump--jump interactions formed in such cases, for different values of inter-jet spacings and for different strengths of the individual jets. Analogous flow fields associated with the interactions between a single impinging jet and a fence are also studied to allow convenient experimental flow vizualizations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adarkar, D. B. & Hall, G. R. 1969 The ‘fountain effect’ and VTOL exhaust ingestion. J. Aircraft 6, 109.CrossRefGoogle Scholar
Arakeri, J. H. & Rao, A. 1996 On radial flow on a horizontal surface and the circular hydraulic jump. J. Indian Inst. Sci. 76, 7391.Google Scholar
Aristoff, J. M., Leblanc, J. D., Hosoi, A. E. & Bush, J. W. M. 2004 Viscous hydraulic jumps. Phys. Fluids 16, S4.CrossRefGoogle Scholar
Barata, J. M. M. 1996 Fountain flows produced by multiple impinging jets in a crossflow AIAA J. 34, 25232530.CrossRefGoogle Scholar
Beltos, S. 1976 Oblique impingement of circular turbulent jets. J Hydraul. Res. 14 1736.CrossRefGoogle Scholar
Blackford, B. L. 1996 The hydraulic jump in radially spreading flow: A new model and new experimental data. Am. J. Phys. 64, 164169.CrossRefGoogle Scholar
Bohr, T., Dimon, P. & Putkaradze, V. 1993 Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 254, 635648.CrossRefGoogle Scholar
Brechet, Y. & Néda, Z, 1999 On the circular hydraulic jump. Am. J. Phys. 67, 723731.CrossRefGoogle Scholar
Bremond, N. & Villermaux, E. 2006 Atomization by jet impact. J. Fluid Mech. 549, 273306.CrossRefGoogle Scholar
Bush, J. W. M. & Aristoff, J. M. 2003 The influence of surface tension on the circular hydraulic jump. J. Fluid. Mech. 489, 229238.CrossRefGoogle Scholar
Bush, J. W. M., Aristoff, J. M. & Hosoi, A. E. 2006 An experimental investigation of the stability of the circular hydraulic jump. J. Fluid. Mech. 558, 3352.CrossRefGoogle Scholar
Bush, J. W. M. & Hasha, A. E. 2004 On the collision of laminar jets: fluid chains and fishbones. J. Fluid. Mech. 511, 285310.CrossRefGoogle Scholar
Cabrita, P. M., Saddington, A. J. & Knowles, K. 2005 PIV measurements in a twin-jet STOVL fountain flow. Aeronaut. J. 109, 439449.CrossRefGoogle Scholar
Choo, Y. J. & Kang, B. S. 2001 Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method. Exps. Fluids 31, 5662.CrossRefGoogle Scholar
Choo, Y. J. & Kang, B. S. 2002 The velocity distribution of the liquid sheet formed by two low-speed impinging jets. Phys. Fluids 14, 622627.CrossRefGoogle Scholar
Craik, A., Lathman, R., Fawkes, M. & Gibbon, P. 1981 The circular hydraulic jump. J. Fluid. Mech. 112, 347362.CrossRefGoogle Scholar
Elbanna, H. & Sabbagh, J. A. 1989 Flow visualization and measurements in a two-dimensional two-impinging-jet flow. AIAA J. 27, 420426.CrossRefGoogle Scholar
Ellegaard, C., Hansen, A. E., Hanning, A., Hansen, K., Marcussen, A., Bohr, T., Hansen, J. L. & Watanabe, S. 1998 Creating corners in kitchen sinks. Nature 392, 767768.CrossRefGoogle Scholar
Ellegaard, C., Hansen, A. E., Hanning, A., Hansen, K., Marcussen, A., Bohr, T., Hansen, J. L. & Watanabe, S. 1999 Cover illustration: Polygonal hydraulic jumps. Nonlinearity 12, 17.CrossRefGoogle Scholar
Gilbert, B. 1989 Turbulence measurements in a radial upwash. AIAA J. 27, 4451.CrossRefGoogle Scholar
Godwin, R. 1993 The hydraulic jump (“shocks” and viscous flow in the kitchen sink). Am. J. Phys. 61, 829832.CrossRefGoogle Scholar
Hamed, M. S. & Akmal, M. 2005 Determination of heat transfer rates in an industry-like spray quench system using multiple impinging water jets. Intl J. Materials Product Technol. 24, 184198.CrossRefGoogle Scholar
Hansen, S. H., Horlúck, S., Zauner, D., Dimon, P., Ellegaard, P. & Watanabe, S. 1997 Geometrical orbits of surface waves from a circular hydraulic jump. Phy. Rev. E 55, 70487061.Google Scholar
Hasson, D. & Peck, R. E. 1964 Thickness distribution in a sheet formed by impinging jets. AIChE J. 10, 752754.CrossRefGoogle Scholar
Hill, W. G. Jr. 1985 Effects of a central fence on upwash flows. J. Aircraft 22, 771775.CrossRefGoogle Scholar
Hill, W. G. Jr. & Jenkins, R. C. 1980 Effect of nozzle spacing on ground interference forces for a two-jet V/STOL aircraft. J. Aircraft 17, 684689.CrossRefGoogle Scholar
Higuera, F. J. 1994 Hydraulic jump in a viscous laminar flow. J. Fluid Mech. 274, 6992.CrossRefGoogle Scholar
Higuera, F. J. 1997 The circular hydraulic jump. Phys. Fluids 9, 14761478.CrossRefGoogle Scholar
Ishigai, S., Nakanishi, S., Mizunao, M. & Imamura, T. 1977 Heat transfer of the impinging round water jet in the interference zone of film flowing along the wall. Bull. JSME 20, 8592.CrossRefGoogle Scholar
Kate, R. P., Das, P. K. & Chakraborty, S. 2007 a Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal plate. J. Fluid Mech 573, 247263.CrossRefGoogle Scholar
Kate, R. P., Das, P. K. & Chakraborty, S. 2007 b Hydraulic jumps with corners due to obliquely inclined circular liquid jets. Phys. Rev. E 75, 056310-1–056310-6.Google ScholarPubMed
Kind, R. J. & Suthanthiran, K. 1972 The interaction of two opposing plane turbulent wall jets. AIAA Paper 72-211.CrossRefGoogle Scholar
LienhardV, J. H. V, J. H. 2006 Heat transfer by impingement of circular free-surface liquid jets. 18th National and 17th ISHMT-ASME Conference IIT Guwahati, India, pp. k206–k221.Google Scholar
Liu, X. & LienhardV, J. H. V, J. H. 1993 a Extremely high heat fluxes beneath impinging jets. J. Heat Transfer 115, 472476.CrossRefGoogle Scholar
Liu, X. & LienhardV, J. H. V, J. H. 1993 b The hydraulic jump in circular jet impingement and in other thin. liquid films. Exps. Fluids 15, 108116.CrossRefGoogle Scholar
Miller, P. 1995 A study of wall jets resulting from single and multiple inclined jet impingement Aeronaut. J. 32, 201216.CrossRefGoogle Scholar
Nakoryakov, V., Pokusaev, B. & Troyan, E. 1978 Impingement of an axisymmetric liquid jet on a barrier Intl J. Heat Mass Transfer 21, 11751184.CrossRefGoogle Scholar
Olsson, R. G. & Turkdogan, E. T. 1966 Radial spread of a liquid stream on a horizontal plate. Nature 211, 813816.CrossRefGoogle Scholar
Rao, A. & Arakeri, J. H. 1998 Integral analysis applied to radial film flows. Intl J. Heat Mass Transfer 41, 27572767.CrossRefGoogle Scholar
Rubel, A. 1981 Computations of the oblique impingement of round jets upon a plane wall. AIAA J. 19, 863871.CrossRefGoogle Scholar
Rubel, A. 1982 Oblique impingement of a round jet on plane surface. AIAA J. 20, 17561758.CrossRefGoogle Scholar
Saripalli, K. R. 1983 Visualization of multijet impingement flow. AIAA J. 21, 483484.CrossRefGoogle Scholar
Siclari, M. J., Aidala, P., Wohllebe, F. & Palcza, J. L. 1977 Development of prediction techniques for multi-jet thermal ground flow field and fountain formation. AIAA Paper 77-616.CrossRefGoogle Scholar
Siclari, M. J., Hill, W. G. Jr. & Jenkins, R. C. 1981 Stagnation line and upwash formation of two impinging jets. AIAA J. 19, 12861293.CrossRefGoogle Scholar
Siclari, M. J., Migdal, D. & Luzzi, T. W. Jr. 1976 Development of theoretical models for jet-induced effects on V/STOL aircraft. J. Aircraft 13, 938944.CrossRefGoogle Scholar
Skifstad, J. G. 1970 Aerodynamics of jets pertinent to VTOL aircraft. J. Aircraft 7, 193204.CrossRefGoogle Scholar
Sparrow, E. M. & Lovell, B. J. 1980 Heat transfer characteristics of an obliquely impinging circular jet. Trans. ASME: J. Heat Transfer 102, 202209.CrossRefGoogle Scholar
Stevens, J. & Webb, B. W. 1991 The effect of inclination on local heat transfer under an axisymmetric free liquid jet. 34, 12271236.Google Scholar
Taylor, G. I. 1960 Formation of thin flat sheets of water. Proc. R. Soc. Lond. 259, 117.Google Scholar
Thielen, L., Jonker, H. J. J. & Hanjalic, K. 2003 Symmetry breaking of flow and heat transfer in multiple impinging jets Intl J. Heat Mass Transfer 24, 444453.Google Scholar
Tong, A. Y. 2003 On the oblique impingement heat transfer of an oblique free surface plane jet. J. Heat Mass Transfer 46, 20772085.CrossRefGoogle Scholar
Watson, E. J. 1964 The spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481499.CrossRefGoogle Scholar
Yokoi, K. & Xiao, F. 2002 Mechanism of structure formation in circular hydraulic jumps: Numerical studies of strongly deformed free-surface shallow flows. Physica D 161, 202219.Google Scholar