Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T05:53:06.426Z Has data issue: false hasContentIssue false

An entrainment model for lazy turbulent plumes

Published online by Cambridge University Press:  15 December 2016

P. Carlotti*
Affiliation:
Laboratoire Central de la Préfecture de Police, 39bis rue de Dantzig, 75015 Paris, France
G. R. Hunt
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
*
Email address for correspondence: [email protected]

Abstract

An entrainment model for lazy turbulent plumes is proposed, the resulting solutions of the plume conservation equations are developed and the implications for plume behaviour are considered and compared with the available experimental data. Indeed, the applicability of the classic solutions of the conservation equations subject to source conditions that produce lazy plumes, i.e. those with suitably high source Richardson number, contains an essential weakness: the underlying assumption of a constant entrainment coefficient. While entrainment models prescribing the dependence of the entrainment coefficient on the local Richardson number have been proposed for forced plumes, corresponding formulations for lazy plumes have not until now been considered. In the context of saline plumes, the model is applied directly. For hot gaseous plumes, we use a modified definition of buoyancy flux to recover a constant buoyancy flux in a non-stratified environment, despite the specific heat varying with the temperature. After a brief review of existing forced-plume formulations of entrainment, a power-law variation is adopted for the lazy plume. The plume equations are solved for the parameter $0\leqslant \unicode[STIX]{x1D714}<1$, where $\unicode[STIX]{x1D714}$ denotes the exponent of the power law. The cases of pure plumes and lazy plumes are then analysed in more detail; to the best of our knowledge this represents the first modelling of variable entrainment for lazy plumes. Specifically, it is shown that classic plume theory is recovered for $\unicode[STIX]{x1D714}=0$, while for $\unicode[STIX]{x1D714}=1/5$ the plume equations may be solved using usual functions (notably polynomials) only. The results of the models for these cases are very similar, which advocates the idea of selecting systematically $\unicode[STIX]{x1D714}=1/5$, instead of $\unicode[STIX]{x1D714}=0$, for cases where the effect of variation of entrainment is weak, since the new model leads to simple calculations. In the case of very lazy plumes, it is shown that, provided that a relevant value of $\unicode[STIX]{x1D714}$ is chosen, the new model reproduces the available experimental results well.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Candelier, F. & Vauquelin, O. 2012 Matched asymptotic solutions for turbulent plumes. J. Fluid Mech. 699, 489499.CrossRefGoogle Scholar
Carlotti, P.2013 Eléments de mécanique des fluides pour la modélisation des incendies. CSTB Res. Rep., http://hal-cstb.archives-ouvertes.fr/CSTB/tel-00978098/fr/.Google Scholar
Carlotti, P. & Hunt, G. R. 2005 Analytical solutions for non-Boussinesq plumes. J. Fluid Mech. 538, 343359.Google Scholar
Caulfield, C. P.1991 Stratification and buoyancy in geophysical flows. PhD thesis, DAMTP, University of Cambridge.Google Scholar
Ezzamel, A., Salizzoni, P. & Hunt, G. R. 2015 Dynamical variability of axisymmetric buoyant plumes. J. Fluid Mech. 765, 576611.Google Scholar
Fannelop, T. K. & Webber, D. M. 2003 On buoyant plumes rising from area sources in a calm environment. J. Fluid Mech. 497, 319334.Google Scholar
Fischer, H. B., List, E. J., Koy, R. C.-Y., Imberger, J. & Brooks, N. H. 1979 Mixing in Inland and Coastal Waters. Academic.Google Scholar
Hunt, G. R. & van den Bremer, T. S. 2010 Classical plume theory: 1937–2010 and beyond. IMA J. Appl. Maths 76, 125.Google Scholar
Hunt, G. R. & Kaye, N. G. 2001 Virtual origin correction for lazy turbulent plumes. J. Fluid Mech. 435, 377396.Google Scholar
Kaye, N. B. 2008 Turbulent plumes in stratified environments: a review of recent work. Atmos.-Ocean 46, 433441.CrossRefGoogle Scholar
Kaye, N. B. & Hunt, G. R. 2009 An experimental study of large area source turbulent plumes. Intl J. Heat Fluid Flow 30, 10991105.Google Scholar
Lamalle, D., Carlotti, P., Salizzoni, P. & Perkins, R. J. 2013 Simulations aux grandes échelles de panaches. In 21st Congrès Français de Mécanique, Bordeaux, France (ed. Iordanoff, I.), Association Française de Mécanique, http://documents.irevues.inist.fr/handle/2042/52776.Google Scholar
List, E. J. 1982 Mechanics of turbulent buoyant jets and plumes. In Turbulent Buoyant Jets and Plumes (ed. Rodi, W.), pp. 168. Pergamon.Google Scholar
Morton, B. R. 1959 Forced plumes. J. Fluid Mech. 5, 151163.Google Scholar
Morton, B. R., Taylor, G. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 23, 123.Google Scholar
Pham, M. V., Plourde, F. & Kim, S. D. 2005 Three-dimensional characterisation of a pure thermal plume. Trans. ASME 127, 624636.CrossRefGoogle Scholar
Priestley, C. H. B. & Ball, F. K. 1955 Continuous convection from an isolated source of heat. Q. J. R. Meteorol. Soc. 81, 144157.Google Scholar
van Reeuwijk, M. & Craske, J. 2015 Energy-consistent entrainment relations for jets and plumes. J. Fluid Mech. 782, 333355.Google Scholar
van Reeuwijk, M., Salizzoni, P., Hunt, G. R. & Craske, J. 2016 Turbulent transport and entrainment in jets and plumes: a DNS study. Phys. Rev. Fluids 1, 074301.CrossRefGoogle Scholar
Rooney, G. G. & Linden, P. F. 1996 Similarity considerations for non-Boussinesq plumes in an unstratified environment. J. Fluid Mech. 318, 237250.Google Scholar
Taylor, G. I. 1958 Flow induced by jets. J. Aero. Sci. 25, 464465.Google Scholar
Wang, H. W. & Law, A. W. K. 2002 Second order integral model for a round turbulent buoyant jet. J. Fluid Mech. 459, 397428.Google Scholar
Zeldovich, Y. B. 1937 The asymptotic laws of freely-ascending convective flows. Zh. Eksp. Teor. Fiz. 7, 14631465 (in Russian). English translation in Selected Works of Yakov Borisovich Zeldovich, vol. 1 (ed. J. P. Ostriker), 1992, pp. 82–85. Princeton University Press.Google Scholar