Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T21:53:32.987Z Has data issue: false hasContentIssue false

An energy model for artificially generated bubbles in liquids

Published online by Cambridge University Press:  26 April 2006

F. Aitken
Affiliation:
Laboratoire d'Electrostatique et des Matériaux Diélectriques, Centre National de la Recherche Scientifique, 38000 Grenoble, France
F. M. J. Mccluskey
Affiliation:
Laboratoire d'Electrostatique et des Matériaux Diélectriques, Centre National de la Recherche Scientifique, 38000 Grenoble, France Present address: Department of Mechanical Engineering, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, UK.
A. Denat
Affiliation:
Laboratoire d'Electrostatique et des Matériaux Diélectriques, Centre National de la Recherche Scientifique, 38000 Grenoble, France

Abstract

A mathematical analysis is carried out to model the series of processes following the occurrence of an electron avalanche in a liquid right through to the emission of a pressure transient and the formation of a bubble. The initial energy distribution is chosen to be Gaussian and it is assumed that the electrical energy injected into the system is transformed into thermal and mechanical components. From the mechanical point of view, an outgoing spherical pressure transient is formed at the edge of the plasma region, and at a later time a bubble is also formed. Theoretically, the pressure transient accounts for about 15% of the total injected energy, while it is necessary to revert to experimental results to fix the energy associated with the bubble (about 2%). A minimum such value can, however, be estimated. The maximum pressure amplitude is calculated. Concerning the thermal component of the energy, some is absorbed as internal energy by the liquid, while the remainder is stocked as latent heat of vaporization. The maximum temperature difference is derived as are the different energies as functions of the total injected energy. The advantage of this type of model is that the gas/vapour temperature in the bubble can continue to rise after the phase change takes place. The maximum bubble size following a given energy injection is calculated assuming an adiabatic expansion process. A mathematical expression for the liquid flow induced by the outgoing pressure transient is also found. Comparison between experimental and theoretical results is particularly good.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloncle, A. P., Dufresne, D. & Autric, M. 1993 Characterisation of pressure waves in liquids using an interferometric method. IUTAM Symp. on Bubble Dynamics and Interface Phenomena, Birmingham, UK.
Alloncle, A. P., Viernes, J., Dufresne, D., Clement, X., Guerin, J. M. & Testud, P. 1990 Study of the interaction of a high power laser radiation and a transparent liquid. 8 th Intl. Symp. on Gas Flow and Chemical Lasers, Madrid, Spain, SPIE 1397, pp. 675678.
Besant, W. 1859 Hydrostatics and Hydrodynamics. Deighton Bell, Cambridge.
Brinkley, Jr. S. R. & Kirkwood, J. G. 1947 Theory of the propagation of shock waves. Phys. Rev. 71, 606611.Google Scholar
Church, C. C. 1989 A theoretical study of cavitation generated by an extra-corporeal shock wave lithotripter. J. Acoust. Soc. Am. 86, 215227.Google Scholar
Cole, R. H. 1948 Underwater Explosions. Princeton University Press.
Coleman, A. J. & Saunders, J. E. 1989 A survey of the acoustic output of commercial extracorporeal shock wave lithotripers. Ultrasound Med. Biol. 15, 213227.Google Scholar
Coleman, A. J., Saunders, J. E., Crum, L. E. & Dyson, M. 1987 Acoustic cavitation generated by an extracorporeal shock wave lithotriper. Ultrasound Med. Biol. 13, 6976.Google Scholar
Delius, M., Enders, G., Xuan, Z., Lieblich, H. G. & Brendel, W. 1988 Biological effects of shock waves: kidney damage by shock waves in dogs — dose dependence. Ultrasound Med. Biol. 14, 117122.Google Scholar
Docchio, F., Regondi, P., Capon, M. R. C. & Mellerio, J. 1988 Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd: YAG laser pulses. 1: Analysis of the plasma starting times. Appl. Optics 27, 36613667.Google Scholar
Giovanneschi-Testud, P. 1987 Contribution à l'étude de la cavitation à bulles isolées initiées par un rayonnement laser de grande intensité. Thèse d'Etat, Université d'Aix-Marseille II.
Hammitt, F. G. 1966 Damage to solids caused by cavitation. Proc. R. Soc. Lond A 260, 243255.Google Scholar
Hammitt, F. G. 1980 Cavitation and Multiphase Flow Phenomena. McGraw-Hill.
Harrison, M. 1952 An experimental study of single bubble cavitation noise. J. Acoust. Soc. Am. 24, 776782.Google Scholar
Hentschel, W. & Lauterborn, W. 1982 Acoustic emission of single laser-produced cavitation bubbles and their dynamics. Appl. Sci. Res. 38, 225230.Google Scholar
Hernandez-Avila, J. L., Bonifaci, N. & Denat, A. 1994 Hot electron phenomena in liquid and gaseous Ar and N2 in divergent electric fields. IEEE Trans. Dielectrics 1, 412418.Google Scholar
Hu, C. L. 1969 Spherical model of an acoustical wave generated by rapid laser heating in a liquid. J. Acoust. Soc. Am. 46, 728736.Google Scholar
Kattan, R. 1990 Etude de la formation et de la dynamique de bulles dans les hydrocarbures liquides generées par les impulsions de courant en champ électrique intense. Doctoral thesis, Grenoble.
Kattan, R., Denat, A. & Bonifaci, N. 1991 Formation of vapour bubbles in non-polar liquids initiated by current pulses. IEEE Trans. Electr. Insul. 26, 656662.Google Scholar
Kattan, R., Denat, A. & Lesaint, O. 1989 Generation, growth and collapse of vapour bubbles in hydrocarbon liquids under a high divergent electric field. J. Appl. Phys. 66, 40624066.Google Scholar
Kirkwood, J. G. & Bethe, H. A. 1942 Basic propagation theory. In The Pressure Wave Produced by an Underwater Explosion (ed. J. G. Kirkwood, E. Montroll, J. M. Richardson, S. R. Brinkley, O. K. Rice & R. Ginell), pp. 588675. OSRD.
Kitayama, O., Ise, H., Sato, T. & Takayama, K. 1987 Non-invasive gallstone disintegration by underwater shock focusing. Proc. 16th Intl Symp. on Shock Tubes and Waves, Aachen, pp. 897903.
Knapp, R. T., Daily, J. W. & Hammitt, F. G. 1970 Cavitation. McGraw-Hill.
Lauterborn, W. 1972 High speed photography of laser-induced breakdown in liquids. Appl. Phys. Lett. 21, 2730.Google Scholar
Leighton, T. G. 1994 The Acoustic Bubble. Academic Press.
McCluskey, F. M. J. & Denat, A. 1996 The behaviour of bubbles generated by electrical current impulses over a wide range of applied pressures. J. Appl. Phys. 80, 20492059.Google Scholar
Naude, C. F. & Ellis, A. T. 1961 On the mechanism of cavitation damage to non-hemispherical cavities collapsing in contact with a solid boundary. Trans. ASME D: J. Basic Engng 83, 648654.Google Scholar
Nigmatulin, R. I., Khabeev, N. S. & Nagiev, F. B. 1981 Dynamics, heat and mass transfer of vapour—gas bubbles in a liquid. Intl J. Heat Mass Transfer., 24, 10331044.Google Scholar
Noack, J. & Vogel, A. 1995 Streak-photographic investigation of shock wave emission after laser-induced plasma formation in water. Laser—Tissue Interactions IV. SPIE Proc. 2391 (in press).
Osborne, M. F. M. & Taylor, A. H. 1946 Non-linear propagation of underwater shock waves. Phys. Rev. 70, 322328.Google Scholar
Pearsall, I. S. 1972 Cavitation. Mills and Boon Ltd.
Philipp, A., Delius, M., Scheffczyk, C., Vogel, A. & Lauterborn, W. 1993 Interaction of lithotripter-generated shock waves with air bubbles. J. Acoust. Soc. Am. 93, 24962509.Google Scholar
Prosperetti, A. 1991 The thermal behaviour of oscillating gas bubbles. J. Fluid Mech. 222, 587616.Google Scholar
Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 9498.Google Scholar
Sacchi, C. A. 1991 Laser-induced electric breakdown in water. J. Opt. Soc. Am. B 8, 337345.Google Scholar
Vakil, N., Gracewski, S. M. & Everbach, E. C. 1991 Relationship to model stone properties to fragmentation mechanisms during lithotripsy. J. Lithotripsy and Stone Disease 3, 304310.Google Scholar
Vogel, A. & Lauterborn, W. 1988 Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84, 719731.Google Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 208, 299338.Google Scholar
Watson, P. K., Chadband, W. G. & Sadeghzadeh-Araghi, M. 1991 The role of electrostatic and hydrodynamic forces in the negative point breakdown of liquid dielectrics. IEEE Trans. Electr. Insul. 26, 543559.Google Scholar
Wheeler, W. H. 1960 Indentation of metals by cavitation. Trans. ASME D: J. Basic Engng 82, 184194.Google Scholar
Zel'dovich, Y. B. & Raizer, Y. P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. Academic Press.