Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T12:43:03.029Z Has data issue: false hasContentIssue false

An efficient cellular flow model for cohesive particle flocculation in turbulence

Published online by Cambridge University Press:  24 February 2020

K. Zhao
Affiliation:
Department of Mechanical Engineering, UC Santa Barbara, CA 93106, USA State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
B. Vowinckel
Affiliation:
Department of Mechanical Engineering, UC Santa Barbara, CA 93106, USA Leichtweiß-Institut für Wasserbau, Technische Universität Braunschweig, 38106 Braunschweig, Germany
T.-J. Hsu
Affiliation:
Center for Applied Coastal Research, Department of Civil & Environmental Engineering, University of Delaware, Newark, DE 19716, USA
T. Köllner*
Affiliation:
Department of Mechanical Engineering, UC Santa Barbara, CA 93106, USA
B. Bai
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
E. Meiburg*
Affiliation:
Department of Mechanical Engineering, UC Santa Barbara, CA 93106, USA
*
Present address: CADFEM GmbH, 85567 Grafing, Germany
Email address for correspondence: [email protected]

Abstract

We propose a one-way coupled model that tracks individual primary particles in a conceptually simple cellular flow set-up to predict flocculation in turbulence. This computationally efficient model accounts for Stokes drag, lubrication, cohesive and direct contact forces on the primary spherical particles, and allows for a systematic simulation campaign that yields the transient mean floc size as a function of the governing dimensionless parameters. The simulations reproduce the growth of the cohesive flocs with time, and the emergence of a log-normal equilibrium distribution governed by the balance of aggregation and breakage. Flocculation proceeds most rapidly when the Stokes number of the primary particles is $O(1)$. Results from this simple computational model are consistent with experimental observations, thus allowing us to propose a new analytical flocculation model that yields improved agreement with experimental data, especially during the transient stages.

Type
JFM Rapids
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergougnoux, L., Bouchet, G., Lopez, D. & Guazzelli, E. 2014 The motion of solid spherical particles falling in a cellular flow field at low Stokes number. Phys. Fluids 26 (9), 093302.CrossRefGoogle Scholar
Biegert, E., Vowinckel, B. & Meiburg, E. 2017a A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds. J. Comput. Phys. 340, 105127.CrossRefGoogle Scholar
Biegert, E., Vowinckel, B., Ouillon, R. & Meiburg, E. 2017b High-resolution simulations of turbidity currents. Prog. Earth Planet. Sci. 4 (1), 33.CrossRefGoogle Scholar
Bouyer, D., Line, A. & Do-quang, Z. 2004 Experimental analysis of floc size distribution under different hydrodynamics in a mixing tank. AIChE J. 50, 20642081.CrossRefGoogle Scholar
Cox, R. G. & Brenner, H. 1967 The slow motion of a sphere through a viscous fluid towards a plane surface—II Small gap widths, including inertial effects. Chem. Engng Sci. 22, 17531777.CrossRefGoogle Scholar
Hill, P. S., Boss, E., Newgard, J. P., Law, B. A. & Milligan, T. G. 2011 Observations of the sensitivity of beam attenuation to particle size in a coastal bottom boundary layer. J. Geophys. Res. 116, C02023.CrossRefGoogle Scholar
Keyvani, A. & Strom, K. 2014 Influence of cycles of high and low turbulent shear on the growth rate and equilibrium size of mud flocs. Mar. Geol. 354, 114.Google Scholar
Khelifa, A. & Hill, P. S. 2006a Kinematic assessment of floc formation using a Monte Carlo model. J. Hydraul Res. 44 (4), 548559.Google Scholar
Khelifa, A. & Hill, P. S. 2006b Models for effective density and settling velocity of flocs. J. Hydraul Res. 44 (3), 390401.Google Scholar
Kuprenas, R., Tran, D. & Strom, K. 2018 A shear-limited flocculation model for dynamically predicting average floc size. J. Geophys. Res. 123, 67366752.CrossRefGoogle Scholar
Lee, J. B., Toorman, E., Molz, J. F. & Wang, J. 2011 A two-class population balance equation yielding bimodal flocculation of marine or estuarine sediments. Water Res. 45, 21312145.Google ScholarPubMed
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice Hall.Google Scholar
Maggi, F., Mietta, F. & Winterwerp, J. C. 2007 Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment. J. Hydrol. 343, 4355.CrossRefGoogle Scholar
Maxey, M. R. 1987 The motion of small spherical particles in a cellular flow field. Phys. Fluids 30, 19151928.CrossRefGoogle Scholar
Shen, X., Lee, B. J., Fettweis, M. & Toorman, E. A. 2018 A tri-modal flocculation model coupled with TELEMAC for estuarine muds both in the laboratory and in the field. Water Res. 145, 473486.Google Scholar
Sherwood, C. R., Aretxabaleta, A. L. & Harris, C. K. 2018 Cohesive and mixed sediment in the regional ocean modeling system implemented in the coupled ocean atmosphere wave sediment-transport modeling system. Geosci. Model Develop. 11, 18491871.CrossRefGoogle Scholar
Shin, J. H., Son, M. & Lee, G. 2015 Stochastic flocculation model for cohesive sediment suspended in water. Water 7, 25272541.CrossRefGoogle Scholar
Son, M. & Hsu, T. J. 2008 Flocculation model of cohesive sediment using variable fractal dimension. Environ. Fluid Mech. 8 (1), 5571.CrossRefGoogle Scholar
Son, M. & Hsu, T. J. 2009 The effect of variable yield strength and variable fractal dimension on flocculation of cohesive sediment. Water Res. 43 (14), 35823592.Google ScholarPubMed
Strom, K. & Keyvani, A. 2016 Flocculation in a decaying shear field and its implications for mud removal in near-field river mouth discharges. J. Geophys. Res. 121, 21422162.CrossRefGoogle Scholar
Tran, D., Kuprenas, R. & Strom, K. 2018 How do changes in suspended sediment concentration alone influence the size of mud flocs under steady turbulent shearing? Cont. Shelf Res. 158, 114.CrossRefGoogle Scholar
Verney, R., Lafite, R., Burn-Cottan, J. C. & le Hir, P. 2011 Behaviour of floc population during a tidal cycle: laboratory experiments and numerical modeling. Cont. Shelf Res. 31 (10), 6483.CrossRefGoogle Scholar
Vowinckel, B., Withers, J., Luzzatto-Fegiz, P. & Meiburg, E. 2019 Settling of cohesive sediment: particle-resolved simulations. J. Fluid Mech. 858, 544.CrossRefGoogle Scholar
Wang, L. P. & Maxey, R. M. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
Winterwerp, J. C. 1998 A simple model for turbulence induced flocculation of cohesive sediment. J. Hydraul Res. 36 (3), 309326.Google Scholar
Winterwerp, J. C., Manning, A. J., Martens, C., de Mulder, T. & Vanlede, J. 2006 A heuristic formula for turbulence-induced flocculation of cohesive sediment. Estuar. Coast. Shelf Sci. 68, 195207.CrossRefGoogle Scholar
Yoshimasa, W. 2017 Flocculation and me. Water Res. 114, 88103.Google Scholar