Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T21:45:26.129Z Has data issue: false hasContentIssue false

The alpha-effect in rotating convection: size matters

Published online by Cambridge University Press:  14 December 2007

DAVID W. HUGHES
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
FAUSTO CATTANEO
Affiliation:
Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA

Abstract

The results of numerical simulations of convection in a rotating layer are used to compute the α-effect of mean-field electrodynamics. The computations are carried out for different system sizes. It is found that the outcomes can depend critically on the system size, and that physically meaningful results can only be obtained if the system size is large compared with the typical eddy size.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cattaneo, F. & Hughes, D. W. 2006 Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401418.Google Scholar
Cattaneo, F., Emonet, T. & Weiss, N. O. 2003 On the interaction between convection and magnetic fields. Astrophys. J. 588, 11831198.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.Google Scholar
Childress, S. & Gilbert, A. D. 1995 Stretch, Twist, Fold: The Fast Dynamo. Springer.Google Scholar
Childress, S. & Soward, A. M. 1972 Convection driven hydromagnetic dynamo. Phys. Rev. Lett. 29, 837839.CrossRefGoogle Scholar
Courvoisier, A., Hughes, D. W. & Tobias, S. M. 2008 The influence of spatial phase demodulations on the α-effect and turbulent diffusion (in preparation).Google Scholar
Eltayeb, I. A. & Roberts, P. H. 1970 On the hydromagnetics of rotating fluids. Astrophys. J. 162, 699701.CrossRefGoogle Scholar
Fautrelle, Y. & Childress, S. 1982 Convective dynamos with intermediate and strong fields. Geophys. Astrophys. Fluid Dyn. 22, 235279.Google Scholar
Jones, C. A. & Roberts, P. H. 2000 Convection-driven dynamos in a rotating plane layer. J. Fluid Mech. 404, 311343.Google Scholar
Pétrélis, F. & Fauve, S. 2006 Inhibition of the dynamo effect by phase fluctuations. Europhys. Lett. 76, 602608.CrossRefGoogle Scholar
Rotvig, J. & Jones, C. A. 2002 Rotating convection-driven dynamos at low Ekman number. Phys. Rev. E 66, 056308:115.Google ScholarPubMed
Soward, A. M. 1974 A convection driven dynamo I. The weak field case. Phil. Trans. R. Soc. Lond. A 275, 611651.Google Scholar
St.Pierre, M. G. 1993 The strong field branch of the Childress-Soward dynamo. In Theory of Solar and Planetary Dynamos (ed. Proctor, M. R. E., Matthews, P. C. & Rucklidge, A. M.), pp. 295302. Cambridge University Press.Google Scholar
Stellmach, S. & Hansen, U. 2004 Cartesian convection driven dynamos at low Ekman number. Phys. Rev. E 70, 056312:116.Google Scholar
Vainshtein, S. I. & Kitchatinov, L. L. 1986 The dynamics of magnetic fields in a highly conducting turbulent medium and the generalized Kolmogorov-Fokker-Planck equations. J. Fluid Mech. 168, 7387.CrossRefGoogle Scholar