Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T21:53:04.311Z Has data issue: false hasContentIssue false

Algebraically diverging modes upstream of a swept bluff body

Published online by Cambridge University Press:  02 August 2011

Dominik Obrist*
Affiliation:
Institute of Fluid Dynamics, ETH Zurich, 8092 Zürich, Switzerland
Peter J. Schmid
Affiliation:
Laboratoire d’Hydrodynamique (LadHyX), CNRS-École Polytechnique, 91128 Palaiseau, France
*
Email address for correspondence: [email protected]

Abstract

Classical stability theory for swept leading-edge boundary layers predicts eigenmodes in the free stream with algebraic decay far from the leading edge. In this article, we extend the classical base flow solution by Hiemenz to a uniformly valid solution for the flow upstream of a bluff body, which includes a three-dimensional boundary layer, an inviscid stagnation-point flow and an outer parallel flow. This extended, uniformly valid base flow additionally supports modes which diverge algebraically outside the boundary layer. The theory of wave packet pseudomodes is employed to derive analytical results for the growth rates and for the eigenvalue spectra of this type of mode. The complete spectral analysis of the flow, including the algebraically diverging modes, will give a more appropriate basis for receptivity studies and will more accurately describe the interaction of perturbations in the free stream with disturbances in the boundary layer.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
2. Dhanak, M. R. & Stuart, J. T. 1995 Distortion of the stagnation-point flow due to cross-stream vorticity in the external flow. Phil. Trans. R. Soc. Lond. A 352, 443452.Google Scholar
3. Görtler, H. 1955 Dreidimensionale Instabilität der ebenen Staupunktströmung gegenüber wirbelartigen Störungen. In 50 Jahre Grenzschichtforschung (ed. Görtler, H. & Tollmien, W. ). p. 304. Vieweg.CrossRefGoogle Scholar
4. Hall, P., Malik, M. R. & Poll, D. I. A. 1984 On the stability of an infinite swept attachment line boundary layer. Proc. R. Soc. Lond. A 395, 229245.Google Scholar
5. Hämmerlin, G. 1955 Zur Instabilitätstheorie der ebenen Staupunktströmung. In 50 Jahre Grenzschichtforschung (ed. Görtler, H. & Tollmien, W. ), p. 315. Vieweg.CrossRefGoogle Scholar
6. Hiemenz, K. 1911 Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. PhD thesis, Göttingen.Google Scholar
7. Obrist, D. & Schmid, P. J. 2003 On the linear stability of swept attachment-line boundary-layer flow. Part 1. Spectrum and asymptotic behaviour. J. Fluid Mech. 493, 129.CrossRefGoogle Scholar
8. Obrist, D. & Schmid, P. J. 2010 Algebraically decaying modes and wave packet pseudomodes in swept Hiemenz flow. J. Fluid Mech. 643, 309331.CrossRefGoogle Scholar
9. Schmid, P. J. & Henningson, D. S. 2000 Stability and Transition in Shear Flows. Springer.Google Scholar
10. Trefethen, L. N. 2005 Wave packet pseudomodes of variable coefficient differential operators. Proc. R. Soc. A 461 (2062), 30993122.CrossRefGoogle Scholar
11. Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.CrossRefGoogle Scholar
12. Zaki, T. A. & Durbin, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.CrossRefGoogle Scholar