Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T23:02:28.400Z Has data issue: false hasContentIssue false

Air entrainment and bubble statistics in breaking waves

Published online by Cambridge University Press:  19 July 2016

Luc Deike*
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
W. Kendall Melville
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
Stéphane Popinet
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190 Institut Jean Le Rond d’Alembert, F-75005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

We investigate air entrainment and bubble statistics in three-dimensional breaking waves through novel direct numerical simulations of the two-phase air–water flow, resolving the length scales relevant for the bubble formation problem, the capillary length and the Hinze scale. The dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial scaling arguments. The air entrainment properties and bubble size statistics are investigated for various initial characteristic wave slopes. For radii larger than the Hinze scale, the bubble size distribution, can be described by $N(r,t)=B(V_{0}/2{\rm\pi})({\it\varepsilon}(t-{\rm\Delta}{\it\tau})/Wg)r^{-10/3}r_{m}^{-2/3}$ during the active breaking stages, where ${\it\varepsilon}(t-{\rm\Delta}{\it\tau})$ is the time-dependent turbulent dissipation rate, with ${\rm\Delta}{\it\tau}$ the collapse time of the initial air pocket entrained by the breaking wave, $W$ a weighted vertical velocity of the bubble plume, $r_{m}$ the maximum bubble radius, $g$ gravity, $V_{0}$ the initial volume of air entrained, $r$ the bubble radius and $B$ a dimensionless constant. The active breaking time-averaged bubble size distribution is described by $\bar{N}(r)=B(1/2{\rm\pi})({\it\epsilon}_{l}L_{c}/Wg{\it\rho})r^{-10/3}r_{m}^{-2/3}$, where ${\it\epsilon}_{l}$ is the wave dissipation rate per unit length of breaking crest, ${\it\rho}$ the water density and $L_{c}$ the length of breaking crest. Finally, the averaged total volume of entrained air, $\bar{V}$, per breaking event can be simply related to ${\it\epsilon}_{l}$ by $\bar{V}=B({\it\epsilon}_{l}L_{c}/Wg{\it\rho})$, which leads to a relationship for a characteristic slope, $S$, of $\bar{V}\propto S^{5/2}$. We propose a phenomenological turbulent bubble break-up model based on earlier models and the balance between mechanical dissipation and work done against buoyancy forces. The model is consistent with the numerical results and existing experimental results.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbaglah, G., Delaux, S., Fuster, D., Hoepffner, J., Josserand, C., Popinet, S., Ray, P., Scardovelli, R. & Zaleski, S. 2011 Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. C. R. Méc. 339 (23), 194207.CrossRefGoogle Scholar
Andreas, E. L., Edson, J. B., Monahan, E. C., Rouault, M. P. & Smith, S. D. 1995 The spray contribution to net evaporation from the sea: a review of recent progress. Boundary-Layer Meteorol. 72 (1-2), 352.Google Scholar
Baldy, S. 1993 A generation-dispersion model of ambient and transient bubbles in the close vicinity of breaking waves. J. Geophys. Res. 98 (C10), 1827718293.CrossRefGoogle Scholar
Banner, M. L. & Peirson, W. L. 2007 Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 585 (1), 93115.Google Scholar
Blenkinsopp, C. E. & Chaplin, J. R. 2007 Void fraction measurements in breaking waves. Proc. R. Soc. Lond. A 463 (2088), 31513170.Google Scholar
Blenkinsopp, C. E. & Chaplin, J. R. 2010 Bubble size measurements in breaking waves using optical fiber phase detection probes. IEEE J. Ocean. Engng 35 (2), 388401.Google Scholar
Chen, G., Kharif, C., Zaleski, S. & Li, J. 1999 Two dimensionnal Navier–Stokes simulation of breaking waves. Phys. Fluids 11, 121133.CrossRefGoogle Scholar
Chen, X., Ma, D., Yang, V. & Popinet, S. 2013 High-fidelity simulations of impinging jet atomization. Atomiz. Sprays 23 (12), 10791101.Google Scholar
Deane, G. B. & Stokes, M. D. 2002 Scale dependance of bubble creation mechanisms in breaking waves. Nature 418, 839844.Google Scholar
Deike, L., Fuster, D., Berhanu, M. & Falcon, E. 2014 Direct numerical simulations of capillary wave turbulence. Phys. Rev. Lett. 112, 234501.CrossRefGoogle ScholarPubMed
Deike, L., Popinet, S. & Melville, W. K. 2015 Capillary effects on wave breaking. J. Fluid Mech. 769, 541569.Google Scholar
Derakhti, M. & Kirby, J. T. 2014 Bubble entrainment and liquid–bubble interaction under unsteady breaking waves. J. Fluid Mech. 761, 464506.Google Scholar
Drazen, D. A., Melville, W. K. & Lenain, L. 2008 Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech. 611 (1), 307332.Google Scholar
Duncan, J. H. 1981 An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. R. Soc. Lond. A 377 (1770), 331348.Google Scholar
Farmer, D. M., McNeil, C. L. & Johnson, B. D. 1993 Evidence for the importance of bubbles in increasing air-sea gas flux. Nature 361, 620623.Google Scholar
Fuster, D., Agbaglah, G., Josserand, C., Popinet, S. & Zaleski, S. 2009 Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41, 065001.CrossRefGoogle Scholar
Fuster, D., Matas, J.-P., Marty, S., Popinet, S., Hoepffner, J., Cartellier, A. & Zaleski, S. 2013 Instability regimes in the primary breakup region of planar coflowing sheets. J. Fluid Mech. 736, 150176.CrossRefGoogle Scholar
Garrett, C., Li, M. & Farmer, D. 2000 The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30 (9), 21632171.Google Scholar
Gemmrich, J. R., Banner, M. L. & Garrett, C. 2008 Spectrally resolved energy dissipation rate and momentum flux of breaking waves. J. Phys. Oceanogr. 38 (6), 12961312.Google Scholar
Grare, L., Peirson, W. L., Branger, H., Walker, J. W., Giovanangeli, J.-P. & Makin, V. 2013 Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech. 722, 550.Google Scholar
Hinze, J. O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.Google Scholar
Iafrati, A. 2011 Energy dissipation mechanisms in wave breaking processes: spilling and highly aerated plunging breaking events. J. Geophys. Res. 116, C07024.Google Scholar
Kiger, K. T. & Duncan, J. H. 2012 Air-entrainment mechanisms in plunging jets and breaking waves. Annu. Rev. Fluid Mech. 44, 563596.Google Scholar
Kleiss, J. M. & Melville, W. K. 2010 Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr. 40 (12), 25752604.Google Scholar
Lamarre, E. & Melville, W. K. 1991 Air entrainment and dissipation in breaking waves. Nature 351, 469472.Google Scholar
Lamarre, E. & Melville, W. K. 1994 Void fraction measurements and sound speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Am. 95 (3), 13171328.Google Scholar
de Leeuw, G., Andreas, E. L, Anguelova, M. D., Fairall, C. W., Lewis, E. R., O’Dowd, C., Schulz, M. & Schwartz, S. E. 2011 Production flux of sea spray aerosol. Rev. Geophys. 49, RG2001.Google Scholar
Leifer, I. & de Leeuw, G. 2006 Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles. J. Geophys. Res. 111, C06020.Google Scholar
Liang, J. H., McWilliams, J. C., Sullivan, P. P. & Baschek, B. 2011 Modeling bubbles and dissolved gases in the ocean. J. Geophys. Res. 116, C03015.Google Scholar
Liang, J.-H., McWilliams, J. C., Sullivan, P. P. & Baschek, B. 2012 Large eddy simulation of the bubbly ocean: new insights on subsurface bubble distribution and bubble-mediated gas transfer. J. Geophys. Res. 117, C04002.Google Scholar
Lim, H.-J., Chang, K.-A., Huang, Z.-C. & Na, B. 2015 Experimental study on plunging breaking waves in deep water. J. Geophys. Res. 120 (3), 20072049.CrossRefGoogle Scholar
Liu, X. & Duncan, J. H. 2003 The effects of surfactants on spilling breaking waves. Nature 421, 520523.Google Scholar
Liu, X. & Duncan, J. H. 2006 An experimental study of surfactant effects on spilling breakers. J. Fluid Mech. 567, 433455.Google Scholar
Loewen, M. R., O’Dor, M. A. & Skafel, M. G. 1996 Bubbles entrained by mechanically generated breaking waves. J. Geophys. Res. 101 (C9), 2075920769.Google Scholar
Lubin, P. & Glockner, S. 2015 Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments. J. Fluid Mech. 767, 364393.CrossRefGoogle Scholar
Martinez-Bazan, C., Montanes, J. L. & Lasheras, J. C. 1999 On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 401, 157182.Google Scholar
Melville, W. K. 1996 The role of surface wave breaking in air–sea interaction. Annu. Rev. Fluid Mech. 28, 279321.Google Scholar
Melville, W. K. & Fedorov, A. V. 2015 The equilibrium dynamics and statistics of gravity-capillary waves. J. Fluid Mech. 767, 449466.Google Scholar
Melville, W. K. & Matusov, P. 2002 Distribution of breaking waves at the ocean surface. Nature 417, 5863.CrossRefGoogle ScholarPubMed
Memery, L. & Merlivat, L. 1985 Modelling of gas flux through bubbles at the air–water interface. Tellus B 37 (4–5), 272285.Google Scholar
Monahan, E. C. & Dam, H. G. 2001 Bubbles: an estimate of their role in the global oceanic flux of carbon. J. Geophys. Res. 106 (C5), 93779383.CrossRefGoogle Scholar
Phillips, O. M. 1985 Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156, 505531.Google Scholar
Pizzo, N. E. & Melville, W. K. 2013 Vortex generation by deep-water breaking waves. J. Fluid Mech. 734, 198218.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Popinet, S. 2003 Gerris: a tree-based adaptative solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572600.Google Scholar
Popinet, S. 2009 An accurate adaptative solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.Google Scholar
Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S., Johnson, G. C., Josey, S. A., Kostianoy, A. et al. 2013 Observations: ocean. In Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change (ed. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M.), Cambridge University Press.Google Scholar
Rojas, G. & Loewen, M. R. 2007 Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves. Exp. Fluids 43 (6), 895906.Google Scholar
Rojas, G. & Loewen, M. R. 2010 Void fraction measurements beneath plunging and spilling breaking waves. J. Geophys. Res. 115 (C8), 21562202.Google Scholar
Romero, L., Melville, W. K. & Kleiss, J. M. 2012 Spectral energy dissipation due to surface wave breaking. J. Phys. Oceanogr. 42, 14211441.Google Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31 (1), 567603.Google Scholar
Shi, F., Kirby, J. T. & Ma, G. 2010 Modeling quiescent phase transport of air bubbles induced by breaking waves. Ocean Model. 35 (1), 105117.Google Scholar
Song, C. & Sirviente, A. 2004 A numerical study of breaking waves. Phys. Fluids 16, 2649.Google Scholar
Sutherland, P. & Melville, W. K. 2013 Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett. (40), 30743079.Google Scholar
Terrill, E. J., Melville, W. K. & Stramski, D. 2001 Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J. Geophys. Res. 106 (C8), 1681516823.Google Scholar
Thomson, J., Gemmrich, J. R. & Jessup, A. T. 2009 Energy dissipation and the spectral distribution of whitecaps. Geophys. Res. Lett. 36, L11601.Google Scholar
Thoraval, M.-J., Takehara, K., Etoh, T. G., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S. T. 2012 von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108, 264506.Google Scholar
Thorpe, S. A. 1982 On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air–sea gas transfer. Phil. Trans. R. Soc. Lond. A 304 (1483), 155210.Google Scholar
Veron, F. 2015 Ocean spray. Annu. Rev. Fluid Mech. 47, 507538.Google Scholar
Woolf, D. K. & Thorpe, S. A. 1991 Bubbles and the air-sea exchange of gases in near-saturation conditions. J. Mar. Res. 49 (3), 435466.Google Scholar