Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T21:45:23.963Z Has data issue: false hasContentIssue false

Ageostrophic instabilities of fronts in a channel in a stratified rotating fluid

Published online by Cambridge University Press:  25 May 2009

J. GULA*
Affiliation:
Laboratoire de Météorologie Dynamique, ENS, IPSL, Paris, France
R. PLOUGONVEN
Affiliation:
Laboratoire de Météorologie Dynamique, ENS, IPSL, Paris, France
V. ZEITLIN
Affiliation:
Laboratoire de Météorologie Dynamique, ENS, IPSL, Paris, France
*
Email address for correspondence: [email protected]

Abstract

It is known that for finite Rossby numbers geostrophically balanced flows develop specific ageostrophic instabilities. We undertake a detailed study of the Rossby–Kelvin (RK) instability, previously studied by Sakai (J. Fluid Mech., vol. 202, 1989, pp. 149–176) in a two-layer rotating shallow-water model. First, we benchmark our method by reproducing the linear stability results obtained by Sakai (1989) and extend them to more general configurations. Second, in order to determine the relevance of RK instability in more realistic flows, simulations of the evolution of a front in a continuously stratified fluid are carried out. They confirm the presence of RK instability with characteristics comparable to those found in the two-layer case. Finally, these simulations are used to study the nonlinear saturation of the RK modes. It is shown that saturation is achieved through the development of small-scale instabilities along the front which modify the mean flow so as to stabilize the RK mode. Remarkably, the developing instability leads to conversion of kinetic energy of the basic flow to potential energy, contrary to classical baroclinic instability.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanasyev, Y. 2003 Spontaneous emission of gravity waves by interacting vortex dipoles in a stratified fluid: laboratory experiments. Geophys. Astrophys. Fluid Dyn. 97 (2), 7995.CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University PressGoogle Scholar
Eady, E. T. 1949 Long waves and cyclone waves. Tellus 1, 3352.CrossRefGoogle Scholar
Ford, R., McIntyre, M. E. & Norton, W. A. 2000 Balance and the slow quasimanifold: some explicit results. J. Atmos. Sci. 57, 12361254.2.0.CO;2>CrossRefGoogle Scholar
Fritts, D. C. & Alexander, M. J. 2003 Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41 (1), 1003.CrossRefGoogle Scholar
Fritts, D. C. & Nastrom, G. D. 1992 Sources of mesoscale variability of gravity waves. Part 2. Frontal, convective, and jet stream excitation. J. Atmos. Sci. 49 (2), 111127.2.0.CO;2>CrossRefGoogle Scholar
Gula, J., Zeitlin, V. & Plougonven, R. 2009 Instabilities of two-layer shallow-water flows with vertical shear in the rotating annulus. Submitted.CrossRefGoogle Scholar
Hayashi, Y.-Y. & Young, W. R. 1987 Stable and unstable shear modes of rotating parallel flows in shallow water. J. Fluid Mech. 184, 477504.CrossRefGoogle Scholar
Holton, J. R. 1992 An Introduction to Dynamic Meteorology, 3rd edn. Academic.Google Scholar
Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. 1985 On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111 (470), 877946.CrossRefGoogle Scholar
Iga, K. 1993 Reconsideration of Orlanski's instability theory of frontal waves. J. Fluid Mech. 255, 213236.CrossRefGoogle Scholar
Jones, W. L. 1967 Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech. 30, 439448.CrossRefGoogle Scholar
Kim, Y.-J., Eckermann, S. D. & Chun, H.-Y. 2003 An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.-Ocean 41, 6598.Google Scholar
Leith, C. E. 1980 Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37, 958968.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N. 1980 Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37, 16851699.2.0.CO;2>CrossRefGoogle Scholar
Molemaker, M. J., McWilliams, J. C. & Yavneh, I. 2005 Baroclinic instability and loss of balance. J. Phys. Oceanogr. 35, 15051517.CrossRefGoogle Scholar
Nakamura, N. 1988 Scale slection of baroclinic instability: effects of stratification and nongeostrophy. J. Atmos. Sci. 45 (21), 32533267.2.0.CO;2>CrossRefGoogle Scholar
Parker, D. J. 1998 Secondary frontal waves in the North Atlantic region: a dynamical perspective of current ideas. Q. J. R. Meteorol. Soc. 124, 829856.CrossRefGoogle Scholar
Pedlosky, Joseph 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
Phillips, N. A. 1954 Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6 (6), 273286.CrossRefGoogle Scholar
Plougonven, R., Muraki, D. J. & Snyder, C. 2005 A baroclinic instability that couples balanced motions and gravity waves. J. Atmos. Sci. 62, 15451559.CrossRefGoogle Scholar
Plougonven, R. & Snyder, C. 2005 Gravity waves excited by jets: propagation versus generation. Geoph. Res. Lett. 32 (L18802). doi:10.1029/2005GL023730.CrossRefGoogle Scholar
Plougonven, R. & Snyder, C. 2007 Inertia–gravity waves spontaneously generated by jets and fronts. Part I. Different baroclinic life cycles. J. Atmos. Sci. 64, 25022520.CrossRefGoogle Scholar
Plougonven, R., Teitelbaum, H. & Zeitlin, V. 2003 Inertia–gravity wave generation by the tropospheric mid-latitude jet as given by the fastex radiosoundings. J. Geophys. Res. 108 (D21), 4686.Google Scholar
Plougonven, R. & Zeitlin, V. 2002 Internal gravity wave emission from a pancake vortex: an example of wave-vortex interaction in strongly stratified flows. Phys. of Fluids 14 (3), 12591268.CrossRefGoogle Scholar
Poulin, F. J. & Flierl, G. R. 2003 The nonlinear evolution of barotropically unstable jets. J. Phys. Oceanogr. 33, 21732192.2.0.CO;2>CrossRefGoogle Scholar
Ripa, P. 1983 General stability conditions for zonal flows in a one-layer model on the β-plane or the sphere. J. Fluid Mech. 126, 463489.CrossRefGoogle Scholar
Sakai, S. 1989 Rossby–Kelvin instability: a new type of ageostrophic instability caused by a resonance between rossby waves and gravity waves. J. Fluid Mech. 202, 149176.CrossRefGoogle Scholar
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. & Powers, J. G. 2005 A description of the Advanced Research WRF Version 2. Tech Note. NCAR.Google Scholar
Stone, P. H. 1966 On non-geostrophic baroclinic instability. J. Atmos. Sci. 23, 390400.2.0.CO;2>CrossRefGoogle Scholar
Stone, P. H. 1970 On non-geostrophic baroclinic instability. Part 2. J. Atmos. Sci. 27, 721726.2.0.CO;2>CrossRefGoogle Scholar
Sutyrin, G. G. 2007 Ageostrophic instabilities in a horizontally uniform baroclinic flow along a slope. J. Fluid Mech. 588, 463473.CrossRefGoogle Scholar
Tokioka, T. 1970 Non-geostrophic and non-hydrostatic stability of a baroclinic fluid. J. Meteorol. Soc. Jpn 48, 503520.CrossRefGoogle Scholar
Trefethen, L. N. 2000 Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Vanneste, J. 1993 The Kelvin–Helmoltz instability in a non-geostrophic baroclinic unstable flow. Math. Comput. Modelling 17, 149154.CrossRefGoogle Scholar
Vanneste, J. & Yavneh, I. 2004 Exponentially small inertia–gravity waves and the breakdown of quasi-geostrophic balance. J. Atmos. Sci. 61, 211223.2.0.CO;2>CrossRefGoogle Scholar
Vanneste, J. & Yavneh, I. 2007 Unbalanced instabilities of rapidly rotating stratified shear flows. J. Fluid Mech. 584, 373396.CrossRefGoogle Scholar
Wicker, L. J. & Skamarock, W. C. 2002 Time splitting methods for elastic models using forward time schemes. Mon. Weath. Rev. 130, 20882097.2.0.CO;2>CrossRefGoogle Scholar
Williams, P. D., Haine, T. W. N. & Read, P. L. 2005 On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid Mech. 528, 122.CrossRefGoogle Scholar
Wunsch, C. & Ferrari, R. 2004 Vertical mixing energy and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.CrossRefGoogle Scholar