Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T05:48:11.230Z Has data issue: false hasContentIssue false

Aerodynamic sound generation by global modes in hot jets

Published online by Cambridge University Press:  18 March 2010

LUTZ LESSHAFFT*
Affiliation:
Laboratoire d'Hydrodynamique, CNRS – École Polytechnique, 91128 Palaiseau, France
PATRICK HUERRE
Affiliation:
Laboratoire d'Hydrodynamique, CNRS – École Polytechnique, 91128 Palaiseau, France
PIERRE SAGAUT
Affiliation:
D'Alembert Institute, Université Pierre et Marie Curie (Paris 6), Boite 162, 4 place Jussieu, 75252 Paris Cedex 05, France
*
Email address for correspondence: [email protected]

Abstract

The acoustic field generated by the synchronized vortex street in self-excited hot subsonic jets is investigated via direct numerical simulation of the compressible equations of motion in an axisymmetric geometry. The simulation simultaneously resolves both the aerodynamic near field and the acoustic far field. Self-sustained near-field oscillations in the present flow configurations have been described as nonlinear global modes in an earlier study. The associated acoustic far field is found to be that of a compact dipole, emanating from the location of vortex roll-up. A far-field solution of the axisymmetric Lighthill equation is derived, on the basis of the source term formulation of Lilley (AGARD-CP, vol. 131, 1974, pp. 13.1–13.12). With the near-field source distributions obtained from the direct numerical simulations, the Lighthill solution is in good agreement with the far-field simulation results. Fluctuations of the enthalpy flux within the jet are identified as the dominant aeroacoustic source. Superdirective effects are found to be negligible.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersson, N., Eriksson, L. E. & Davidson, L. 2005 Large-eddy simulation of subsonic turbulent jets and their radiated sound. AIAA J. 43 (9), 18991912.CrossRefGoogle Scholar
Bodony, D. J. & Lele, S. K. 2005 On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys. Fluids 17, 085103.CrossRefGoogle Scholar
Bodony, D. J. & Lele, S. K. 2006 Review of the current status of jet noise predictions using large-eddy simulation. Paper 2006-0468. AIAA.CrossRefGoogle Scholar
Bodony, D. J. & Lele, S. K. 2008 On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. J. Fluid Mech. 617, 231253.CrossRefGoogle Scholar
Boersma, B. 2005 Large eddy simulation of the sound field of a round turbulent jet. Theoret. Comput. Fluid Dyn. 19, 161170.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2004 Investigation of subsonic jet noise using LES: Mach and Reynolds number effects. Paper 2004-3023. AIAA.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2005 Effects of inflow conditions and forcing on subsonic jet flows and noise. AIAA J. 43 (5), 10001007.CrossRefGoogle Scholar
Bogey, C., Bailly, C. & Juvé, D. 2003 Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible large eddy simulation. Theoret. Comput. Fluid Dyn. 16, 273297.CrossRefGoogle Scholar
Crighton, D. 1975 Basic principles of aerodynamic noise generation. Progr. Aerosp. Sci. 16, 3196.CrossRefGoogle Scholar
Crighton, D. & Huerre, P. 1990 Shear-layer pressure fluctuations and superdirective acoustic sources. J. Fluid Mech. 220, 355368.CrossRefGoogle Scholar
Dowling, A. 1992 Thermoacoustic sources and instabilities. In Modern Methods in Analytical Acoustics, pp. 378405. Springer.Google Scholar
Fleury, V. 2006 Superdirectivité, bruit d'appariement et autres contributions au bruit de jet subsonique. PhD thesis, École Centrale de Lyon, Écully, France.Google Scholar
Fleury, V., Bailly, C. & Juvé, D. 2005 Shear-layer acoustic radiation in an excited subsonic jet: experimental study. C. R. Mec. 333, 746753.Google Scholar
Fortuné, V. & Gervais, Y. 1999 Numerical investigation of the noise radiated from hot subsonic turbulent jets. AIAA J. 37 (9), 10551061.CrossRefGoogle Scholar
Freund, J. 2001 Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277305.CrossRefGoogle Scholar
Freund, J. 2003 Noise source turbulence statistics and the noise from a Mach 0.9 jet. Phys. Fluids 15 (6), 17881799.CrossRefGoogle Scholar
Giles, M. 1990 Nonreflecting boundary conditions for Euler equation calculations. AIAA J. 28, 20502058.CrossRefGoogle Scholar
Goldstein, M. E. 2003 A generalized acoustic analogy. J. Fluid Mech. 488, 315333.CrossRefGoogle Scholar
Huerre, P. & Crighton, D. 1983 Sound generation by instability waves in a low Mach number flow. Paper 83-0661. AIAA.CrossRefGoogle Scholar
Jordan, P., Gervais, Y., Valière, J.-C. & Foulon, H. 2002 Results from acoustic field measurements. Tech Rep. G4RD-CT2000-00313. Laboratoire d'Etudes Aérodynamiques, Université de Poitiers.Google Scholar
Laufer, J. & Yen, T.-C. 1983 Noise generation by a low-Mach-number jet. J. Fluid Mech. 134, 131.CrossRefGoogle Scholar
Lesshafft, L. 2006 Nonlinear global modes and sound generation in hot jets. PhD thesis, École Polytechnique, Palaiseau, France.CrossRefGoogle Scholar
Lesshafft, L. & Huerre, P. 2007 Linear impulse response in hot round jets. Phys. Fluids 19, 024102.CrossRefGoogle Scholar
Lesshafft, L., Huerre, P. & Sagaut, P. 2007 Frequency selection in globally unstable round jets. Phys. Fluids 19, 054108.CrossRefGoogle Scholar
Lesshafft, L., Huerre, P., Sagaut, P. & Terracol, M. 2006 Nonlinear global modes in hot jets. J. Fluid Mech. 554, 393409.CrossRefGoogle Scholar
Lew, P.-T., Blaisdell, G. A. & Lyrintzis, A. S. 2007 Investigation of noise sources in turbulent hot jets using large-eddy simulation data. Paper 2007-0016. AIAA.CrossRefGoogle Scholar
Lighthill, M. 1952 On sound generated aerodynamically. Part I. General theory. Proc. R. Soc. Lond. A 201 (1107), 564587.Google Scholar
Lilley, G. M. 1974 On the noise from jets. AGARD-CP 131, 13.113.12.Google Scholar
Lilley, G. M. 1996 The radiated noise from isotropic turbulence with application to the theory of jet noise. J. Sound Vib. 190, 463476.CrossRefGoogle Scholar
Michalke, A. 1984 Survey on jet instability theory. Progr. Aerosp. Sci. 21, 159199.CrossRefGoogle Scholar
Mitchell, B., Lele, S. & Moin, P. 1999 Direct computation of the sound generated by vortex pairing in an axisymmetric jet. J. Fluid Mech. 383, 113142.CrossRefGoogle Scholar
Monkewitz, P., Bechert, D., Barsikow, B. & Lehmann, B. 1990 Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213, 611639.CrossRefGoogle Scholar
Morfey, C. L. & Wright, M. 2007 Extensions of Lighthill's acoustic analogy with application to computational aeroacoustics. Proc. R. Soc. A 463, 21012127.CrossRefGoogle Scholar
Obrist, D. 2009 Directivity of acoustic emissions from wave packets to the far-field. J. Fluid Mech. Forthcoming.CrossRefGoogle Scholar
Shur, M., Spalart, P. R. & Strelets, M. K. 2005 Noise prediction for increasingly complex jets. Part I. Methods and tests. Intl J. Aeroacous. 4 (3–4), 213266.CrossRefGoogle Scholar
Tanna, H. K. 1977 An experimental study of jet noise. Part I. Turbulent mixing noise. J. Sound Vib. 50 (3), 405428.CrossRefGoogle Scholar
Viswanathan, K. 2004 Aeroacoustics of hot jets. J. Fluid Mech. 516, 3982.CrossRefGoogle Scholar
Wang, M., Freund, J. B. & Lele, S. K. 2006 Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38, 483512.CrossRefGoogle Scholar