Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T18:38:36.581Z Has data issue: false hasContentIssue false

Aerobreakup in disturbed subsonic and supersonic flow fields

Published online by Cambridge University Press:  23 November 2007

T. G. THEOFANOUS
Affiliation:
Center for Risk Studies and Safety, University of California, Santa Barbara, CA 93106, USA
G. J. LI
Affiliation:
Center for Risk Studies and Safety, University of California, Santa Barbara, CA 93106, USA
T. N. DINH
Affiliation:
Center for Risk Studies and Safety, University of California, Santa Barbara, CA 93106, USA
C.-H. CHANG
Affiliation:
Center for Risk Studies and Safety, University of California, Santa Barbara, CA 93106, USA

Abstract

This work concerns the breakup of millimetre-scale liquid droplets in gaseous flow fields that are disturbed from free-stream conditions by the presence of solid obstacles or other drops. A broad range of flow conditions is considered – from subsonic to supersonic, from highly rarefied to ambient pressures, and from fixed cylindrical obstacles to free liquid droplets (as obstacles). The liquid is water or tributyl phosphate, a water-like low-viscosity fluid of very low vapour pressure. We present data on deformation and breakup regimes, and, aided by numerical simulations, we discuss governing mechanisms and the time scaling of these events. Thereby a methodology is demonstrated for conveniently forecasting first-order behaviours in disturbed flow fields more generally. The highly resolved images lend themselves to testing/benchmarking numerical simulations of interfacial flows. These results, along with the experimental capability developed, constitute one of the key building blocks for our overall long-term aim towards predicting ultimate particle-size distributions from such intense aerodynamic interactions involving very large quantities of Newtonian and viscoelastic liquids.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, A. B. & Hiatt, J. 1972 Sphere drag coefficients for a board range of Mach and Reynolds number. AIAA J. 10, 14361440.CrossRefGoogle Scholar
Brodkey, R. 1969 The Phenomena of Fluid Motions. Reading, MA.CrossRefGoogle Scholar
Burgers, J. M. 1958 J. Res. Natl Bur. Stand. 60, 278.CrossRefGoogle Scholar
Chakravarthy, S. R. & Osher, S. 1985 Computing with high-resolution upwind schemes for hyperbolic equation. Lect. Appl. Maths 22, 5786.Google Scholar
Chen, H., LeBeau, R. P. & Huang, P. G. 2005 A cell-centered ressure based method for unstructured incompressible Navier–Stokes solvers. 43rd AIAA Aerospace Sciences Meeting and Exhibit AIAA-2005-0880, Reno, NV, January 10–13, 2005.Google Scholar
Chou, W.-H. & Faeth, G. M. 1998 Temporal properties of secondary drop breakup in the bag breakup regime. Intl J. Multiphase Flow 24, 889912.CrossRefGoogle Scholar
Chou, W.-H., Hsiang, L. P. & Faeth, G. M. 1997 Temporal properties of drop breakup in the shear breakup regime. Intl J. Multiphase Flow 23, 651669.CrossRefGoogle Scholar
Dai, Z. & Faeth, G. M. 2001 Temporal properties of secondary drop breakup in the multimode breakup regime. Intl J. Multiphase Flow 27, 217236.CrossRefGoogle Scholar
Engel, O. G. 1958 Fragmentation of water drops in the zone behind an air shock. J. Res. Natl Bur. Stand. 60, 245280.CrossRefGoogle Scholar
Gel'fand, B. E. 1996 Droplet breakup phenomena in flows with velocity lag. Prog. Energy Combust. Sci. 22, 201265.CrossRefGoogle Scholar
Gel'fand, B. E., Gubin, S. A. & Kogarko, S. M. 1974 Various forms of drop fractionation in shock waves and their special characteristics. InZh.-Fizich. Zhurnal 27, 119126.Google Scholar
Hanson, A. R., Domich, E. G. & Adams, H. S. 1963 Shock tube investigation of the breakup of drops by air blasts. Phys. Fluids 6, 10701080.CrossRefGoogle Scholar
Harper, E. Y., Grube, G. W. & Chang, I.-D. 1972 On the breakup of accelerating liquid drops. J. Fluid Mech. 52, 565591.CrossRefGoogle Scholar
Hinze, J. O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1, 289295.CrossRefGoogle Scholar
Hsiang, L.-P. & Faeth, G. M. 1992 On the breakup of accelerating liquid drops. Intl J. Multiphase Flow 18, 635652.CrossRefGoogle Scholar
Joseph, D. D., Belanger, J. & Beavers, G. S. 1999 Breakup of a liquid suddenly exposed to a high-speed airstream. Intl J. Multiphase Flow 25, 12631303.CrossRefGoogle Scholar
Joseph, D. D., Beavers, G. S. & Funada, T. 2002 Rayleigh–Taylor instability of viscoelastic drops at high Weber numbers. J. Fluid Mech. 453, 109132.CrossRefGoogle Scholar
Li, G. J., Sushchikh, S. Y., Nourgaliev, R. R., Dinh, T. N. & Theofanous, T. G. 2003 Detailed characterization of the gas dynamics in the ALPHA facility. CRSS Report, CRSS-03/08.Google Scholar
Liepmann, H. W. & Roshko, A. 1957 Elements of Gasdynamics. John Wiley.CrossRefGoogle Scholar
Liou, M.-S. 1996 A sequel to AUSM: AUSM+. J. Comput. Phys. 129, 364382.CrossRefGoogle Scholar
Maslach, G. J. & Schaaf, S. A. 1963 Cylinder drag in the transition from continuum to free molecule flow. Phys. Fluids 6, 315321.CrossRefGoogle Scholar
Matta, J. E. & Tytus, R. P. 1982 Viscoelastic breakup in a high velocity airstream. J. Appl. Polymer Sci. 27, 397405.CrossRefGoogle Scholar
Nourgaliev, R. R. & Theofanous, T. G. 2007 High-fidelity interface tracking in compressible flows: unlimited anchored adaptive Level Set. J. Comput. Phys. 224, 836866.CrossRefGoogle Scholar
Nourgaliev, R. R., Dinh, T. N. & Theofanous, T. G. 2006 Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213, 500529.CrossRefGoogle Scholar
Nourgaliev, R. R., Liou, M.-S. & Theofanous, T. G. 2007 Numerical prediction of interfacial instabilities: sharp interface method (SIM). J. Comput. Phys. (submitted).CrossRefGoogle Scholar
Ranger, A. A. & Nicholls, J. A. 1969 Aerodynamic shattering of liquid drops. AIAA J. 7, 285290.Google Scholar
Reinecke, W. & Waldman, G. D. 1970 A study of drop breakup behind strong shocks with applications to flight. Final report, AVCO Government Products Report, SAMCO-TR-70-142.Google Scholar
Rienecke, W. G. Wandman, G. D. McKay, L. W. L. & Ziering, M. B. 1975 Shock layer shattering of water drops and ice crystals in reentry flight. Final Report, AVCO Goverment products report, AFML-TR-75-71.Google Scholar
Simpkins, P. G. & Bales, E. L. 1972 Water-drop response to sudden accelerations. J. Fluid Mech. 55, 629639.CrossRefGoogle Scholar
Taylor, G. I. 1949 The shape and acceleration of a drop in a high-speed air stream. In The Scientific Papers of G. I. Taylor (ed. Batchelor, G. K.). Cambridge University Press.Google Scholar
Theofanous, T. G. 2005 Source term for atmospheric dispersal of liquid agents. Defense Threat Reduction Agency's Science & Technology Conference on Chemical and Biological Information Systems, Albuquerque, New Mexico, Oct. 25–28, 2005.Google Scholar
Theofanous, T. G. & Li, G. J. 2007 On the physics of aero-breakup. Phys. Fluids (in press)Google Scholar
Theofanous, T. G., Li, G. J. & Dinh, T. N. 2004 Aerobreakup in rarefied supersonic flows. Trans. ASME J: it J. Fluids Engng 126, 516527.Google Scholar
Theofanous, T. G., Nourgaliev, R. R., Li, G. J. & Dinh, T. N. 2006 Compressible multi-hydrodynamics (CMH): breakup, mixing, and dispersal, of liquids/solids in high speed flows. In Proc. IUTAM Symp. on Computational Approaches to Disperse Multiphase flow (ed. Prosperetti, A. & Balachandar, S.). Springer.Google Scholar
Villermaux, E., Marmottant, Ph. & Duplat, J. 2004 Ligament-mediated spray formation. Phys. Rev. Lett. 92, 07405-1–4.CrossRefGoogle ScholarPubMed
Waldman, G. D., Reinecke, W. & Glenn, D. C. 1972 Raindrop breakup in the shock layer of a high-speed vehicle. AIAA J. 10, 12001204.CrossRefGoogle Scholar