Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T10:03:51.710Z Has data issue: false hasContentIssue false

Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils

Published online by Cambridge University Press:  21 February 2014

Jacob S. Izraelevitz*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Michael S. Triantafyllou
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

We study experimentally the effect of adding an in-line oscillatory motion to the oscillatory heaving and pitching motion of flapping foils that use a power downstroke. We show that far from being a limitation imposed by the muscular structure of certain animals, in-line motion can be a powerful means to either substantially augment the mean lift, or reduce oscillatory lift and increase thrust; propulsive efficiency can also be increased. We also show that a model-based optimization scheme that is used to drive an iterative sequence of experimental runs provides exceptional ability for flapping foils to tightly vector and keep the force in a desired direction, hence improving performance in locomotion and manoeuvring. Flow visualization results, using particle image velocimetry, establish the connection of distinct wake patterns with flapping modes associated with high lift forces, or modes of high thrust and low lift forces.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. M., Streitlein, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.Google Scholar
Berg, A. M. & Biewener, A. A. 2010 Wing and body kinematics of takeoff and landing flight in the pigeon (columba livia). J. Expl Biol. 213 (10), 16511658.Google Scholar
Davenport, J., Munks, S. A. & Oxford, P. J. 1984 A comparison of the swimming of marine and freshwater turtles. Proc. R. Soc. Lond. B 220 (1221), 447475.Google Scholar
Dickinson, M. H. & Gotz, K. G. 1993 Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Expl Biol. 174 (1), 4564.Google Scholar
DiLeo, C. & Deng, X. 2009 Design of and experiments on a dragonfly-inspired robot. Adv. Robot. 23 (7–8), 10031021.Google Scholar
Epps, B. P. & Techet, A. H. 2007 Impulse generated during unsteady maneuvering of swimming fish. Exp. Fluids 43 (5), 691700.CrossRefGoogle Scholar
Gill, P. E., Murray, W. & Saunders, M. A. 2005 SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47 (1), 99131.Google Scholar
Hansen, N. & Ostermeier, A. 2001 Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9 (2), 159195.Google Scholar
Hedenström, A., Johansson, L. C. & Spedding, G. R. 2009 Bird or bat: comparing airframe design and flight performance. Bioinspir. Biomim. 4 (1), 015001.Google Scholar
Hover, F. S., Haugsdal, Ø. & Triantafyllou, M. S. 2004 Effect of angle of attack profiles in flapping foil propulsion. J. Fluids Struct. 19 (1), 3747.Google Scholar
Jabri, M. & Flower, B. 1992 Weight perturbation: an optimal architecture and learning technique for analog VLSI feedforward and recurrent multi-layer networks. IEEE Trans. Neural Networks 3, 154157.CrossRefGoogle Scholar
Kaya, M. & Tuncer, I. H. 2007 Nonsinusoidal path optimization of a flapping airfoil. AIAA J. 45 (8), 20752082.Google Scholar
Kern, S. & Koumoutsakos, P. 2006 Simulations of optimized anguilliform swimming. J. Expl Biol. 209 (24), 48414857.Google Scholar
Koekkoek, G., Muijres, F. T., Johansson, L. C., Stuiver, M., van Oudheusden, B. W. & Hedenström, A. 2012 Stroke plane angle controls leading edge vortex in a bat-inspired flapper. C. R. Méc. 340 (1–2), 95106.Google Scholar
Licht, S. C., Wibawa, M. S., Hover, F. S. & Triantafyllou, M. S. 2010 In-line motion causes high thrust and efficiency in flapping foils that use power downstroke. J. Expl Biol. 213 (1), 6371.Google Scholar
Lindhe Norberg, U. M. & Winter, Y. 2006 Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers. J. Expl Biol. 209 (19), 38873897.CrossRefGoogle ScholarPubMed
Maresca, C., Favier, D. & Rebont, J. 1978 Experiments on an aerofoil at high angle of incidence in longitudinal oscillations. J. Fluid Mech. 92 (4), 671690.Google Scholar
Moored, K. W., Dewey, P. A., Smits, A. J. & Haj-Hariri, H. 2012 Hydrodynamic wake resonance as an underlying principle of efficient unsteady propulsion. J. Fluid Mech. 708, 329348.Google Scholar
Nudds, R. L., Taylor, G. K. & Thomas, A. L. R. 2004 Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds. Proc. R. Soc. Lond. B 271 (1552), 20712076.Google Scholar
Pan, Y., Dong, X., Zhu, Q. & Yue, D. K. P. 2012 Boundary-element method for the prediction of performance of flapping foils with leading-edge separation. J. Fluid Mech. 698, 446467.CrossRefGoogle Scholar
Prempraneerach, P., Hover, F. S. & Triantafyllou, M. S. 2003 The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In Proc. 13th Intl Symp. on Unmanned Untethered Submersible Technology: Special Session on Bioengineering Research Related to Autonomous Underwater Vehicles New Hampshire.Google Scholar
Read, D. A., Hover, F. S. & Triantafyllou, M. S. 2003 Forces on oscillating foils for propulsion and maneuvering. J. Fluids Struct. 17, 163183.Google Scholar
Roberts, J. W., Moret, L., Zhang, J. & Tedrake, R. 2010 Motor Learning at Intermediate Reynolds Number: Experiments with Policy Gradient on the Flapping Flight of a Rigid Wing. In From Motor to Interaction Learning in Robots vol. 264, p. 293, Springer.Google Scholar
Sane, S. P. & Dickinson, M. H. 2001 The control of flight force by a flapping wing: lift and drag production. J. Expl Biol. 204 (15), 26072626.Google Scholar
Schouveiler, L., Hover, F. & Triantafyllou, M. 2005 Performance of flapping foil propulsion. J. Fluids Struct. 20 (7), 949959.Google Scholar
Slaouti, A. & Gerrard, J. H. 1981 An experimental investigation of the end effects on the wake of a circular cylinder towed through water at low Reynolds numbers. J. Fluid Mech. 112, 297314.CrossRefGoogle Scholar
Szymik, B. G. & Satterlie, R. A. 2011 Changes in wingstroke kinematics associated with a change in swimming speed in a pteropod mollusk, Clione limacina. J. Expl Biol. 214 (23), 39353947.Google Scholar
Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425 (October), 707711.Google Scholar
Theodorsen, T. 1935 General theory of aerodynamic instability and the mechanism of flutter. NACA Tech. Rep. 496.Google Scholar
Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L. & Bomphrey, R. J. 2004 Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Expl Biol. 207 (24), 42994323.Google Scholar
Tobalske, B. & Dial, K. 1996 Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. J. Expl Biol. 199 (2), 263280.Google Scholar
Tobalske, B. W., Warrick, D. R., Clark, C. J., Powers, D. R., Hedrick, T. L., Hyder, G. A. & Biewener, A. A. 2007 Three-dimensional kinematics of hummingbird flight. J. Expl Biol. 210 (13), 23682382.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7 (2), 205224.CrossRefGoogle Scholar
Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A 3 (12), 2835.Google Scholar
Viswanath, K. & Tafti, D. K. 2012 Effect of stroke deviation on forward flapping flight. AIAA J. 51 (1), 145160.CrossRefGoogle Scholar
Wagner, H. 1925 Über die entstehung des dynamischen auftriebes von tragflügeln. Z. Angew. Math. Mech. 5 (1), 1735.Google Scholar
Wakeling, J. M. & Ellington, C. P. 1997 Dragonfly flight. ii. velocities, accelerations and kinematics of flapping flight. J. Expl Biol. 200 (3), 557582.Google Scholar