Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T09:17:55.620Z Has data issue: false hasContentIssue false

Actuator curve embedding – an advanced actuator line model

Published online by Cambridge University Press:  17 November 2017

Pankaj K. Jha
Affiliation:
Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Sven Schmitz*
Affiliation:
Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA
*
Email address for correspondence: [email protected]

Abstract

This article describes an actuator curve embedding (ACE) concept to model arbitrary lifting lines using body forces within large-eddy simulation (LES). The new method removes some inconsistencies in body-force projection of the actuator line model (ALM) commonly used to represent wind turbine blades in atmospheric boundary-layer simulations. The concept and algorithm of ACE are presented followed by selected results for various blade planform and tip shapes that signify both the predictive capability and the advantages of the ACE concept. Examples include an elliptic wing, the NREL Phase VI rotor in parked and rotating conditions, and the NREL 5-MW turbine.

Type
JFM Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Breton, S.-P., Sørensen, J. N., Hansen, K., Sarmast, S. & Ivanell, S. 2017 A survey of modeling methods for high-fidelity wind farm simulations using large eddy simulation. Phil. Trans. R. Soc. Lond. A 375, 20160097.Google Scholar
Calaf, M., Meneveau, C. & Meyers, J. 2010 Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 22, 015110.Google Scholar
Chatelain, P., Backaert, S., Winckelmans, G. & Kern, S. 2013 Large eddy simulation of wind turbine wakes. Phys. Fluids 91, 587605.Google Scholar
Chow, R. & van Dam, C. P. 2012 Verification of computational simulations of the NREL 5-MW rotor with a focus on inboard flow separation. Wind Energy 18, 967981.Google Scholar
Churchfield, M. J., Moriarty, P. J., Vijayakumar, G. & Brasseur, J. G.2010 Wind energy related atmospheric boundary-layer large-eddy simulation using OpenFOAM. Tech. Rep. National Renewable Energy Laboratory, Golden, CO.Google Scholar
Churchfield, M. J., Schreck, S., Martinez-Tossas, L. A., Meneveau, C. & Spalart, P. R. 2017 An advanced actuator line method for wind energy applications and beyond. AIAA Paper 2017-1998.Google Scholar
Hand, M. M., Simms, D. A., Fingersh, L. J., Jager, D. W., Cotrell, J. R., Schreck, S. & Larwood, S. M.2001 Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns. Tech. Rep. NREL/TP-500-29955. National Renewable Energy Laboratory, Golden, CO.Google Scholar
Ivanell, S., Sørensen, J. N. & Henningson, D. 2007 Numerical computations of wind turbine wakes. In Wind Energy, pp. 259263. Springer.CrossRefGoogle Scholar
Jha, P. K.2015 Characterization of wake turbulence in a wind turbine array submerged in atmospheric boundary layer flow. PhD thesis, The Pennsylvania State University.Google Scholar
Jha, P. K., Churchfield, M. J., Moriarty, P. J. & Schmitz, S. 2014 Guidelines for volume force distributions within actuator line modeling of wind turbines in large-eddy simulation-type grids. ASME J. Solar Energy Engng 136, 0310014.Google Scholar
Jha, P. K. & Schmitz, S. 2016 Blade load unsteadiness and turbulence statistics in an actuator-line computed turbine–turbine interaction problem. ASME J. Solar Energy Engng 138, 031002.Google Scholar
Jonkman, J., Butterfield, S., Musial, W. & Scott, G.2009 Definition of a 5-MW reference wind turbine for offshore system development. Tech. Rep. NREL/TP-500-38060. National Renewable Energy Laboratory, Golden, CO.Google Scholar
Lu, H. & Porté-Agel, F. 2011 Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids 23, 065101.Google Scholar
Martinez-Tossas, L. A., Churchfield, M. J. & Meneveau, C. 2017 Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution. Wind Energy 20, 10831096.Google Scholar
Meyers, J. & Meneveau, C. 2012 Optimal turbine spacing in fully developed wind farm boundary layers. Wind Energy 15, 305317.Google Scholar
Mikkelsen, R.2003 Actuator disc methods applied to wind turbines. PhD thesis, Technical University of Denmark.Google Scholar
Milne-Thomson, L. M. 1958 Elliptic loading; lift and induced drag. In Theoretical Aerodynamics, pp. 199206. Macmillan.Google Scholar
Schmitz, S. 2012 XTurb-PSU: A Wind Turbine Design and Analysis Tool. The Pennsylvania State University.Google Scholar
Schmitz, S., Bhagwat, M., Moulton, M. A., Caradonna, F. X. & Chattot, J.-J. 2009 The prediction and validation of hover performance and detailed blade loads. J. Am. Helicopter Soc. 54, 32004.CrossRefGoogle Scholar
Shen, W. Z., Mikkelsen, R., Sørensen, J. N. & Bak, C. 2005 Tip loss corrections for wind turbine computations. Wind Energy 8, 457475.Google Scholar
Shen, W. Z., Zhang, J. H. & Sørensen, J. N. 2009 The actuator surface model: a new Navier–Stokes based model for rotor computations. ASME J. Solar Energy Engng 131, 011002.Google Scholar
Shives, M. & Crawford, C. 2013 Mesh and load distribution requirements for actuator line CFD simulations. Wind Energy 16, 11831196.Google Scholar
Sørensen, J. N., Mikkelsen, R. F., Henningson, D. S., Ivanell, S., Sarmast, S. & Andersen, S. J. 2015 Simulation of wind turbine wakes using the actuator line technique. Phil. Trans. R. Soc. Lond. A 373, 20140071.Google Scholar
Sørensen, J. N. & Shen, W. Z. 2002 Numerical modeling of wind turbine wakes. J. Fluids Engng 124, 393399.Google Scholar
Steinhoff, J. S. & Ramachandran, K.1988 Free wake analysis of helicopter rotor blades in hover using a finite volume technique. Tech. Rep. DAAG29-84-K-0019. U.S. Army Research Office, Research, Triangle Park, NC.Google Scholar
Troldborg, N., Larsen, G. C., Madsen, H. A., Hansen, K. S., Sørensen, J. N. & Mikkelsen, R. 2011a Numerical simulation of wake interaction between two wind turbines at various inflow conditions. Wind Energy 14, 859876.Google Scholar
Troldborg, N., Sørensen, J. N. & Mikkelsen, R. 2010 Numerical simulation of wake characteristics of a wind turbine in uniform inflow. Wind Energy 13, 8699.Google Scholar
Troldborg, N., Sørensen, J. N. & Mikkelsen, R. 2011b Large-eddy simulation of wind-turbine wakes. Boundary-Layer Meteorol. 138, 345366.Google Scholar
Watters, C. S. & Masson, C. 2010 Modelling of lifting-device aerodynamics using the actuator surface concept. Intl J. Numer. Meth. Fluids 62, 12641298.Google Scholar