Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T07:24:22.412Z Has data issue: false hasContentIssue false

Acoustic impedance and hydrodynamic instability of the flow through a circular aperture in a thick plate

Published online by Cambridge University Press:  18 December 2019

D. Fabre*
Affiliation:
Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS; Allée Camille Soula, 31400 Toulouse, France
R. Longobardi
Affiliation:
Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS; Allée Camille Soula, 31400 Toulouse, France DIIN, Universitá degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
V. Citro
Affiliation:
DIIN, Universitá degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
P. Luchini
Affiliation:
DIIN, Universitá degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
*
Email address for correspondence: [email protected]

Abstract

We study the unsteady flow of a viscous fluid passing through a circular aperture in a plate characterized by a non-zero thickness. We investigate this problem by solving the incompressible linearized Navier–Stokes equations around a laminar base flow, in both the forced case (allowing us to characterize the coupling of the flow with acoustic resonators) and the autonomous regime (allowing us to identify the possibility of purely hydrodynamic instabilities). In the forced case, we calculate the impedances and discuss the stability properties in terms of a Nyquist diagram. We show that such diagrams allow us to predict two kinds of instabilities: (i) a conditional instability linked to the over-reflexion of an acoustic wave but requiring the existence of a conveniently tuned external acoustic resonator, and (ii) a purely hydrodynamic instability existing even in a strictly incompressible framework. A parametric study is conducted to predict the range of existence of both instabilities in terms of the Reynolds number and the aspect ratio of the aperture. Analysing the structure of the linearly forced flow allows us to show that the instability mechanism is closely linked to the existence of a recirculation region within the thickness of the plate. We then investigate the autonomous regime using the classical eigenmode analysis. The analysis confirms the existence of the purely hydrodynamic instability in accordance with the impedance-based criterion. The spatial structure of the unstable eigenmodes are found to be similar to the structure of the corresponding unsteady flows computed using the forced problem. Analysis of the adjoint eigenmodes and of the adjoint-based structural sensitivity confirms that the origin of the instability lies in the recirculation region existing within the thickness of the plate.

JFM classification

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. B. C. 1954 Orifices of small thickness-diameter ratio. J. Acoust. Soc. Am. 26, 2125.CrossRefGoogle Scholar
Avanci, M. P., Rodríguez, D. & Alves, L. S. de B. 2019 A geometrical criterion for absolute instability in separated boundary layers. Phys. Fluids 31 (1), 014103.CrossRefGoogle Scholar
Bellucci, V., Flohr, P., Paschereit, C. O. & Magni, F. 2004 On the use of Helmholtz resonators for damping acoustic pulsations in industrial gas turbines. J. Engng Gas Turbines Power 126 (2), 271275.CrossRefGoogle Scholar
Blevins, R. D. 1984 Applied Fluid Hydrodynamics Handbook. Van Nostrand Reinhold.Google Scholar
Bouasse, H. 1929 Instruments á vent. Impr. Delagrave.Google Scholar
Canton, J., Auteri, F. & Carini, M. 2017 Linear global stability of two incompressible coaxial jets. J. Fluid Mech. 824, 886911.CrossRefGoogle Scholar
Conciauro, G. & Puglisi, M.1981 Meaning of the negative impedance. NASA STI/Recon Tech. Rep. N 82. NASA.CrossRefGoogle Scholar
Ehrenstein, U. & Gallaire, F. 2008 Two-dimensional global low-frequency oscillations in a separating boundary-layer flow. J. Fluid Mech. 614, 315327.CrossRefGoogle Scholar
Eldredge, J. D., Bodony, D. J. & Shoeybi, M. 2007 Numerical investigation of the acoustic behavior of a multi-perforated liner. In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), p. 3683.Google Scholar
Fabre, D., Bonnefis, P., Charru, F., Russo, S., Citro, V., Giannetti, F. & Luchini, P. 2014 Application of global stability approaches to whistling jets and wind instruments. In ISMA International Conference on Musical Acoustics. ISMA.Google Scholar
Fabre, D., Citro, V., Sabino, D. F., Bonnefis, P., Sierra, J., Giannetti, F. & Pigou, M. 2018 A practical review to linear and nonlinear approaches to flow instabilities. Appl. Mech. Rev. 70 (6), 060802.CrossRefGoogle Scholar
Fabre, D., Longobardi, R., Bonnefis, P. & Luchini, P. 2019 The acoustic impedance of a laminar viscous jet through a thin circular aperture. J. Fluid Mech. 854, 544.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Gilbarg, D. 1960 Encyclopedia of Physics; Volume IX, Fluid Dynamics III. Jets and Cavities. Springer.Google Scholar
Hammond, D. A. & Redekopp, L. G. 1998 Local and global instability properties of separation bubbles. Eur. J. Mech. (B/Fluids) 17 (2), 145164.CrossRefGoogle Scholar
Howe, M. S. 1979 On the theory of unsteady high Reynolds number flow through a circular aperture. Proc. R. Soc. Lond. A 366, 205223.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Jing, X. & Sun, X. 2000 Effect of plate thickness on impedance of perforated plates with bias flow. AIAA J. 38 (9), 15731578.CrossRefGoogle Scholar
Kierkegaard, A., Allam, S., Efraimsson, G. & Åbom, M. 2012 Simulations of whistling and the whistling potentiality of an in-duct orifice with linear aeroacoustics. J. Sound Vib. 331 (5), 10841096.CrossRefGoogle Scholar
Kopitz, J. & Polifke, W. 2008 Cfd-based application of the Nyquist criterion to thermo-acoustic instabilities. J. Comput. Phys. 227, 67546778.CrossRefGoogle Scholar
Lanzerstorfer, D. & Kuhlmann, H. C. 2012 Global stability of the two-dimensional flow over a backward-facing step. J. Fluid Mech. 693, 127.CrossRefGoogle Scholar
Lesshafft, L. 2018 Artificial eigenmodes in truncated flow domains. Theor. Comput. Fluid Dyn. 32 (3), 245262.CrossRefGoogle Scholar
Longobardi, R., Fabre, D., Bonnefis, P., Citro, V., Giannetti, F. & Luchini, P. 2018 Studying sound production in the hole-one configuration using compressible and incompressible global stability analyses. In Symposium on Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications. IUTAM.Google Scholar
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 493517.CrossRefGoogle Scholar
Moussou, P., Testud, P., Auregan, Y. & Hirschberg, A. 2007 An acoustic criterion for the whistling of orifices in pipes. In Pressure Vessels and Pipping 2007/Creep 8 Conference, p. PVP2007-725167. ASME.Google Scholar
Rayleigh, J. W. S. 1945 The Theory of Sound. Dover.Google Scholar
Rist, U. & Maucher, U. 2002 Investigations of time-growing instabilities in laminar separation bubbles. Eur. J. Mech. (B/Fluids) 21 (5), 495509.CrossRefGoogle Scholar
Schmidt, O. T., Towne, A., Colonius, T., Cavalieri, A. V. G., Jordan, P. & Brès, G. A. 2017 Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech. 825, 11531181.CrossRefGoogle Scholar
Su, J., Rupp, J., Garmory, A. & Carrotte, J. F. 2015 Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices. J. Sound Vib. 352, 174191.CrossRefGoogle Scholar
Testud, P., Auregan, Y., Moussou, P. & Hirschberg, A. 2009 The whistling potentiality of an orifice in a confined flow using an energetic criterion. J. Sound Vib. 325, 769780.CrossRefGoogle Scholar
Yang, D. & Morgans, A. S. 2016 A semi-analytical model for the acoustic impedance of finite length circular holes with mean flow. J. Sound Vib. 384, 294311.CrossRefGoogle Scholar
Yang, D. & Morgans, A. S. 2017 The acoustics of short circular holes opening to confined and unconfined spaces. J. Sound Vib. 393, 4161.CrossRefGoogle Scholar