Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T15:49:34.211Z Has data issue: false hasContentIssue false

Accuracy of high-order lattice Boltzmann method for non-equilibrium gas flow

Published online by Cambridge University Press:  25 November 2020

Yangyang Shi
Affiliation:
School of Astronautics, Harbin Institute of Technology, Harbin, Heilongjiang150001, PR China Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Southern University of Science and Technology, Shenzhen, Guangdong518055, PR China Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, PR China
Lei Wu
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, PR China
Xiaowen Shan*
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Southern University of Science and Technology, Shenzhen, Guangdong518055, PR China Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, PR China
*
Email address for correspondence: [email protected]

Abstract

The lattice Boltzmann method (LBM), which was originally designed for near-incompressible Navier–Stokes flows, has been extended to rarefied gas flows with high-order quadrature in recent years. Although the ability of the high-order LBM to capture rarefaction effects has been demonstrated by many authors, its accuracy and efficiency are often undermined by numerical dissipation introduced by the off-lattice abscissas in Gauss–Hermite quadrature. Here, using the spontaneous Rayleigh–Brillouin scattering problem as the benchmark, we assess the accuracy and efficiency of the high-order LBM with on-lattice quadrature rules up to 39th order. The numerical error comprises two parts, one due to the rarefaction effect and the other due to temporal-spatial discretization, and we find that the former depends not only on the number of discrete velocities, but also on their distribution in velocity space. With a quadrature of 29th order, the error between the LBM and the discrete velocity method is found to be below 1 % up to $Kn=2.0$. Compared with a finite-volume Bhatnagar–Gross–Krook solver using Gauss–Hermite quadrature, the on-lattice LBM has a numerical dissipation several orders of magnitude lower, and achieves the same accuracy with fewer discrete velocities.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, T. 1997 Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation. J. Comput. Phys. 131 (1), 241246.Google Scholar
Ambruş, V. E. & Sofonea, V. 2014 Implementation of diffuse-reflection boundary conditions using lattice Boltzmann models based on half-space Gauss–Laguerre quadratures. Phys. Rev. E 89 (4), 041301.10.1103/PhysRevE.89.041301CrossRefGoogle ScholarPubMed
Ambruş, V. E. & Sofonea, V. 2016 a Application of mixed quadrature lattice Boltzmann models for the simulation of Poiseuille flow at non-negligible values of the Knudsen number. J. Comput. Sci. 17, 403417.Google Scholar
Ambruş, V. E. & Sofonea, V. 2016 b Lattice Boltzmann models based on half-range Gauss–Hermite quadratures. J. Comput. Phys. 316, 760788.10.1016/j.jcp.2016.04.010CrossRefGoogle Scholar
Ambruş, V. E. & Sofonea, V. 2018 Half-range lattice Boltzmann models for the simulation of Couette flow using the Shakhov collision term. Phys. Rev. E 98 (6), 063311.10.1103/PhysRevE.98.063311CrossRefGoogle Scholar
Ansumali, S. & Karlin, I. V. 2002 Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E 66 (2), 026311.Google ScholarPubMed
Ansumali, S., Karlin, I. V., Arcidiacono, S., Abbas, A. & Prasianakis, N. I. 2007 Hydrodynamics beyond Navier–Stokes: exact solution to the lattice Boltzmann hierarchy. Phys. Rev. Lett. 98 (12), 124502.Google ScholarPubMed
Aristov, V. V. 2012 Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows, vol. 60. Springer Science & Business Media.Google Scholar
Barad, M., Kocheemoolayil, J. G. & Kiris, C. C. 2017 Lattice Boltzmann and Navier–Stokes Cartesian CFD approaches for airframe noise predictions. In 23rd AIAA Computational Fluid Dynamics Conference. AIAA.Google Scholar
Bennoune, M., Lemou, M. & Mieussens, L. 2008 Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics. J. Comput. Phys. 227 (8), 37813803.10.1016/j.jcp.2007.11.032CrossRefGoogle Scholar
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222 (3), 145197.10.1016/0370-1573(92)90090-MCrossRefGoogle Scholar
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3), 511525.10.1103/PhysRev.94.511CrossRefGoogle Scholar
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press.Google Scholar
Cercignani, C. 1975 Theory and Application of the Boltzmann Equation. Scottish Academic Press.Google Scholar
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.10.1146/annurev.fluid.30.1.329CrossRefGoogle Scholar
Chen, H. & Shan, X. 2008 Fundamental conditions for $N$th-order accurate lattice Boltzmann models. Physica D 237, 20032008.Google Scholar
Chikatamarla, S. S. & Karlin, I. V. 2009 Lattices for the lattice Boltzmann method. Phys. Rev. E 79 (4), 046701.Google ScholarPubMed
Chu, C.-K. 1965 Kinetic-theoretic description of the formation of a shock wave. Phy. Fluids 8 (1), 1222.Google Scholar
Colosqui, C. E. 2010 High-order hydrodynamics via lattice Boltzmann methods. Phys. Rev. E 81 (2), 026702.10.1103/PhysRevE.81.026702CrossRefGoogle ScholarPubMed
Dellar, P. J. 2001 Bulk and shear viscosities in lattice Boltzmann equations. Phys. Rev. E 64 (3), 031203.10.1103/PhysRevE.64.031203CrossRefGoogle ScholarPubMed
Dimarco, G. & Pareschi, L. 2014 Numerical methods for kinetic equations. Acta Numer. 23, 369520.Google Scholar
Endemann, M., Dubock, P., Ingmann, P., Wimmer, R., Morancais, D. & Demuth, D. 2004 The ADM-Aeolus Mission - the first wind-lidar in space. In 22nd Internation Laser Radar Conference (ed. Pappalardo, G. & Amodeo, A.), vol. 561, pp. 953–956. ESA Publ. Div.Google Scholar
Feuchter, C. & Schleifenbaum, W. 2016 High-order lattice Boltzmann models for wall-bounded flows at finite Knudsen numbers. Phys. Rev. E 94 (1), 013304.CrossRefGoogle ScholarPubMed
Filbet, F. & Jin, S. 2010 A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229 (20), 76257648.10.1016/j.jcp.2010.06.017CrossRefGoogle Scholar
Frisch, U., Hasslacher, B. & Pomeau, Y. 1986 Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 56 (14), 15051508.CrossRefGoogle ScholarPubMed
Ghiroldi, G. P. & Gibelli, L. 2015 A finite-difference lattice Boltzmann approach for gas microflows. Commun. Comput. Phys. 17 (4), 10071018.CrossRefGoogle Scholar
Gu, Z. & Ubachs, W. 2013 Temperature-dependent bulk viscosity of nitrogen gas determined from spontaneous Rayleigh–Brillouin scattering. Opt. Lett. 38 (7), 11101112.10.1364/OL.38.001110CrossRefGoogle ScholarPubMed
Gu, Z. & Ubachs, W. 2014 A systematic study of Rayleigh–Brillouin scattering in air, N$_2$, and O$_2$ gases. J. Chem. Phys. 141 (10), 104320.10.1063/1.4895130CrossRefGoogle Scholar
Guo, Z., Wang, R. & Xu, K. 2015 Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case. Phys. Rev. E 91 (3), 033313.10.1103/PhysRevE.91.033313CrossRefGoogle ScholarPubMed
Hadjiconstantinou, N. G., Garcia, A. L., Bazant, M. Z. & He, G. 2003 Statistical error in particle simulations of hydrodynamic phenomena. J. Comput. Phys. 187 (1), 274297.CrossRefGoogle Scholar
He, X. & Luo, L.-S. 1997 Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56 (6), 68116817.10.1103/PhysRevE.56.6811CrossRefGoogle Scholar
He, X., Shan, X. & Doolen, G. D. 1998 Discrete Boltzmann equation model for nonideal gases. Phys. Rev. E 57 (1), R13R16.10.1103/PhysRevE.57.R13CrossRefGoogle Scholar
Huang, K. 1987 Statistical Mechanics, 2nd edn. John Wiley & Sons.Google Scholar
Ilyin, O. 2020 Gaussian lattice Boltzmann method and its applications to rarefied flows. Phys. Fluids 32 (1), 012007.CrossRefGoogle Scholar
Karlin, I. V. & Asinari, P. 2010 Factorization symmetry in the lattice Boltzmann method. Physica A 389 (8), 15301548.10.1016/j.physa.2009.12.032CrossRefGoogle Scholar
Kim, S. H., Pitsch, H. & Boyd, I. D. 2008 Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers. J. Comput. Phys. 227 (19), 86558671.10.1016/j.jcp.2008.06.012CrossRefGoogle Scholar
Kogan, M. N. 1969 Rarefied Gas Dynamics. Plenum.CrossRefGoogle Scholar
Kolobov, V. I., Arslanbekov, R. R., Aristov, V. V., Frolova, A. A. & Zabelok, S. A. 2007 Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement. J. Comput. Phys. 223 (2), 589608.10.1016/j.jcp.2006.09.021CrossRefGoogle Scholar
Leveque, R. J. 1996 High-resolution conservative algorithms for advection in incompressible flow. SIAM. J. Numer. Anal. 33 (2), 627665.CrossRefGoogle Scholar
Marié, S., Ricot, D. & Sagaut, P. 2009 Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics. J. Comput. Phys. 228 (4), 10561070.10.1016/j.jcp.2008.10.021CrossRefGoogle Scholar
Meng, J. & Zhang, Y. 2011 a Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows. J. Comput. Phys. 230 (3), 835849.CrossRefGoogle Scholar
Meng, J. & Zhang, Y. 2011 b Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows. Phys. Rev. E 83 (3), 036704.CrossRefGoogle ScholarPubMed
Meng, J. & Zhang, Y. 2014 Diffuse reflection boundary condition for high-order lattice Boltzmann models with streaming-collision mechanism. J. Comput. Phys. 258, 601612.10.1016/j.jcp.2013.10.057CrossRefGoogle Scholar
Meng, J., Zhang, Y., Hadjiconstantinou, N. G., Radtke, G. A. & Shan, X. 2013 Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows. J. Fluid Mech. 718, 347370.10.1017/jfm.2012.616CrossRefGoogle Scholar
Meng, J., Zhang, Y. & Shan, X. 2011 Multiscale lattice Boltzmann approach to modeling gas flows. Phys. Rev. E 83 (4), 046701.CrossRefGoogle ScholarPubMed
Mieussens, L. 2013 On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models. J. Comput. Phys. 253, 138156.10.1016/j.jcp.2013.07.002CrossRefGoogle Scholar
Nie, X., Doolen, G. D. & Chen, S. 2002 Lattice-Boltzmann simulations of fluid flows in MEMS. J. Stat. Phys. 107, 279289.10.1023/A:1014523007427CrossRefGoogle Scholar
Nie, X., Shan, X. & Chen, H. 2008 a Galilean invariance of lattice Boltzmann models. Europhys. Lett. 81 (3), 34005.CrossRefGoogle Scholar
Nie, X., Shan, X. & Chen, H. 2008 b Thermal lattice Boltzmann model for gases with internal degrees of freedom. Phys. Rev. E 77 (3), 035701.10.1103/PhysRevE.77.035701CrossRefGoogle ScholarPubMed
Niu, X., Hyodo, S., Munekata, T. & Suga, K. 2007 Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization. Phys. Rev. E 76 (3), 036711.CrossRefGoogle ScholarPubMed
Philippi, P. C., Hegele, L. A. Jr, Dos Santos, L. O. & Surmas, R. 2006 From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models. Phys. Rev. E 73 (5), 056702.CrossRefGoogle ScholarPubMed
Reichl, L. E. 2016 A Modern Course in Statistical Physics. John Wiley & Sons.10.1002/9783527690497CrossRefGoogle Scholar
Shan, X. 2010 General solution of lattices for Cartesian lattice Bhatanagar–Gross–Krook models. Phys. Rev. E 81 (3), 036702.CrossRefGoogle ScholarPubMed
Shan, X. 2016 The mathematical structure of the lattices of the lattice Boltzmann method. J. Comput. Sci. 17, 475481.10.1016/j.jocs.2016.03.002CrossRefGoogle Scholar
Shan, X. 2019 Central-moment-based Galilean-invariant multiple-relaxation-time collision model. Phys. Rev. E 100 (4), 043308.10.1103/PhysRevE.100.043308CrossRefGoogle ScholarPubMed
Shan, X. & Chen, H. 2007 A general multiple-relaxation-time Boltzmann collision model. Intl J. Mod. Phys. C 18 (04), 635643.10.1142/S0129183107010887CrossRefGoogle Scholar
Shan, X. & He, X. 1998 Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80 (1), 6568.CrossRefGoogle Scholar
Shan, X., Yuan, X.-F. & Chen, H. 2006 Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413441.10.1017/S0022112005008153CrossRefGoogle Scholar
Sharipov, F. & Kalempa, D. 2008 Numerical modeling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation. J. Acoust. Soc. Am. 124 (4), 19932001.CrossRefGoogle Scholar
Shi, Y., Ladiges, D. R. & Sader, J. E. 2019 Origin of spurious oscillations in lattice Boltzmann simulations of oscillatory noncontinuum gas flows. Phys. Rev. E 100 (5), 053317.CrossRefGoogle ScholarPubMed
Shi, Y., Yap, Y. W. & Sader, J. E. 2014 Lattice Boltzmann method for linear oscillatory noncontinuum flows. Phys. Rev. E 89 (3), 033305.10.1103/PhysRevE.89.033305CrossRefGoogle ScholarPubMed
Shi, Y., Yap, Y. W. & Sader, J. E. 2015 Linearized lattice Boltzmann method for micro- and nanoscale flow and heat transfer. Phys. Rev. E 92 (1), 013307.CrossRefGoogle ScholarPubMed
Sofonea, V. 2009 Implementation of diffuse reflection boundary conditions in a thermal lattice Boltzmann model with flux limiters. J. Comput. Phys. 228 (17), 61076118.10.1016/j.jcp.2009.05.009CrossRefGoogle Scholar
Stroud, A. H. 1971 Approximate Calculation of Multiple Integrals. Prentice-Hall.Google Scholar
Su, W., Ho, M. T., Zhang, Y. H. & Wu, L. 2020 a GSIS: an efficient and accurate numerical method to obtain the apparent gas permeability of porous media. Comput. Fluids 206, 104576.CrossRefGoogle Scholar
Su, W., Zhu, L., Wang, P., Zhang, Y. & Wu, L. 2020 b Can we find steady-state solutions to multiscale rarefied gas flows within dozens of iterations? J. Comput. Phys. 407, 109245.10.1016/j.jcp.2020.109245CrossRefGoogle Scholar
Sugawara, A., Yip, S. & Sirovich, L. 1968 Spectrum of density fluctuations in gases. Phy. Fluids 11 (5), 925932.CrossRefGoogle Scholar
Sun, Q. H., Boyd, I. D. & Boyd, G. V. 2003 A hybrid continuum/particle approach for micro-scale gas flows. In AIP Conference Proceedings (ed. A. Ketsdever & E. Muntz), vol. 663, pp. 752–759. AIP Publishing.CrossRefGoogle Scholar
Surmas, R., Ortiz, C. E. P. & Philippi, P. C. 2009 Simulating thermohydrodynamics by finite difference solutions of the Boltzmann equation. Eur. Phys. J. Spec. Top. 171 (1), 8190.10.1140/epjst/e2009-01014-xCrossRefGoogle Scholar
Tang, G. H., Zhang, Y. & Emerson, D. R. 2008 Lattice Boltzmann models for nonequilibrium gas flows. Phys. Rev. E 77 (4), 046701.CrossRefGoogle ScholarPubMed
Tenti, G., Boley, C. D. & Desai, R. C. 1974 On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases. Can. J. Phys. 52 (4), 285290.10.1139/p74-041CrossRefGoogle Scholar
Van Hove, L. 1954 Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95 (1), 249262.CrossRefGoogle Scholar
Vieitez, M. O., Duijn, V. E., Ubachs, W., Witschas, B., Meijer, A., Wijn, D. A., Dam, N. J. N. & Water, V. D. W. W. 2010 Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures. Phys. Rev. A 82 (4), 043836.10.1103/PhysRevA.82.043836CrossRefGoogle Scholar
Wagner, W. 1992 A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 66 (3-4), 10111044.CrossRefGoogle Scholar
Wang, P., Ho, M. T., Wu, L., Guo, Z. & Zhang, Y. 2018 A comparative study of discrete velocity methods for low-speed rarefied gas flows. Comput. Fluids 161, 3346.10.1016/j.compfluid.2017.11.006CrossRefGoogle Scholar
Wu, L. & Gu, X.-J. 2020 On the accuracy of macroscopic equations for linearized rarefied gas flows. Adv. Aerodyn. 2, 132.10.1186/s42774-019-0025-4CrossRefGoogle Scholar
Xu, K. & Huang, J.-C 2010 A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 229 (20), 77477764.CrossRefGoogle Scholar
Yang, W. Q., Gu, X. J., Wu, L., Emerson, D. R., Zhang, Y. H. & Tang, S. 2020 A hybrid approach to couple the discrete velocity method and method of moments for rarefied gas flows. J. Comput. Phys. 410, 109397.10.1016/j.jcp.2020.109397CrossRefGoogle Scholar
Yip, S. & Nelkin, M. 1964 Application of a kinetic model to time-dependent density correlations in fluids. Phys. Rev. 135 (5A), A1241A1247.CrossRefGoogle Scholar
Yudistiawan, W. P., Kwak, S. K., Patil, D. V. & Ansumali, S. 2010 Higher-order Galilean-invariant lattice Boltzmann model for microflows: single-component gas. Phys. Rev. E 82 (4), 046701.CrossRefGoogle ScholarPubMed
Zhang, R., Shan, X. & Chen, H. 2006 Efficient kinetic method for fluid simulation beyond the Navier–Stokes equation. Phys. Rev. E 74 (4), 046703.10.1103/PhysRevE.74.046703CrossRefGoogle ScholarPubMed