Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T17:13:53.019Z Has data issue: false hasContentIssue false

Width effect on contact angle hysteresis in a patterned heterogeneous microchannel

Published online by Cambridge University Press:  23 September 2022

Xiangting Chang
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Haibo Huang*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xi-Yun Lu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Jian Hou
Affiliation:
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
*
Email address for correspondence: [email protected]

Abstract

The width effect on contact angle hysteresis in a microchannel with patterned heterogeneous surfaces is systematically investigated. In the model, identical defects periodically appear on the background surface. To this end, a droplet's evaporation and condensation processes inside the microchannel are studied by theoretical analysis and numerical simulation based on a diffuse-interface lattice Boltzmann method. The microchannel width effect on the system's equilibrium properties is studied. The results demonstrate that the number of equilibrium configurations increases linearly with the microchannel width ($b$), and has a quadratic relationship with the cosine of the reference contact angle and the heterogeneity strength ($\varepsilon$). The average most stable contact angle is independent of $b$ and is always equal to the contact angle predicted by the Cassie–Baxter equation. For contact angle hysteresis ($H$), when the microchannels are narrow and wide, there are individual-effect-dominated hysteresis (IDH) and collective-effect-dominated hysteresis (CDH), respectively. The IDH and CDH are hysteresis modes corresponding to the jumping behaviour of contact lines affected by individual defects and two neighbouring defects, respectively. Based on the graphical force balance approach, we establish a scaling law to quantify the connection between $H$, $b$ and $\varepsilon$. Specifically, in the IDH mode, $H\sim b \varepsilon ^2$, while in the CDH mode, $H$ increases linearly with $\varepsilon$ but nonlinearly with $b$.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739805.CrossRefGoogle Scholar
Brandon, S., Haimovich, N., Yeger, E. & Marmur, A. 2003 Partial wetting of chemically patterned surfaces: the effect of drop size. J. Colloid Interface Sci. 263 (1), 237243.CrossRefGoogle ScholarPubMed
Brandon, S. & Marmur, A. 1996 Simulation of contact angle hysteresis on chemically heterogeneous surfaces. J. Colloid Interface Sci. 183 (2), 351355.CrossRefGoogle ScholarPubMed
Cassie, A.B.D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.CrossRefGoogle Scholar
Chai, Z.-H. & Zhao, T.-S. 2012 A pseudopotential-based multiple-relaxation-time lattice Boltzmann model for multicomponent/multiphase flows. Acta Mechanica Sin. 28 (4), 983992.CrossRefGoogle Scholar
Chang, X., Huang, H., Cheng, Y.-P. & Lu, X.-Y. 2019 Lattice Boltzmann study of pool boiling heat transfer enhancement on structured surfaces. Intl J. Heat Mass Transfer 139, 588599.CrossRefGoogle Scholar
Chang, X., Huang, H. & Lu, X.-Y. 2017 Thermal lattice Boltzmann study of three-dimensional bubble growth in quiescent liquid. Comput. Fluids 159, 232242.CrossRefGoogle Scholar
Crassous, J. & Charlaix, E. 1994 Contact angle hysteresis on a heterogeneous surface: solution in the limit of a weakly distorted contact line. Europhys. Lett. 28 (6), 415420.CrossRefGoogle Scholar
David, R. & Neumann, A.W. 2010 Computation of contact lines on randomly heterogeneous surfaces. Langmuir 26 (16), 1325613262.CrossRefGoogle ScholarPubMed
De Gennes, P.G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827863.CrossRefGoogle Scholar
Delmas, M., Monthioux, M. & Ondarçuhu, T. 2011 Contact angle hysteresis at the nanometer scale. Phys. Rev. Lett. 106 (13), 136102.CrossRefGoogle ScholarPubMed
Di Meglio, J.-M. 1992 Contact angle hysteresis and interacting surface defects. Europhys. Lett. 17 (7), 607612.CrossRefGoogle Scholar
Di Meglio, J.-M. & Quéré, D. 1990 Contact angle hysteresis: a first analysis of the noise of the creeping motion of the contact line. Europhys. Lett. 11 (2), 163168.CrossRefGoogle Scholar
Extrand, C.W. 2003 Contact angles and hysteresis on surfaces with chemically heterogeneous islands. Langmuir 19 (9), 37933796.CrossRefGoogle Scholar
Fakhari, A. & Bolster, D. 2017 Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: a lattice Boltzmann model for large density and viscosity ratios. J. Comput. Phys. 334, 620638.CrossRefGoogle Scholar
Fuentes, C.A., Hatipogullari, M., Van Hoof, S., Vitry, Y., Dehaeck, S., Du Bois, V., Lambert, P., Colinet, P., Seveno, D. & Van Vuure, A.W. 2019 Contact line stick-slip motion and meniscus evolution on micrometer-size wavy fibres. J. Colloid Interface Sci. 540, 544553.CrossRefGoogle ScholarPubMed
Gao, L. & McCarthy, T.J. 2006 Contact angle hysteresis explained. Langmuir 22 (14), 62346237.CrossRefGoogle ScholarPubMed
Gao, L. & McCarthy, T.J. 2007 How wenzel and cassie were wrong. Langmuir 23 (7), 37623765.CrossRefGoogle ScholarPubMed
Gao, L. & McCarthy, T.J. 2009 An attempt to correct the faulty intuition perpetuated by the Wenzel and Cassie “laws”. Langmuir 25 (13), 72497255.CrossRefGoogle ScholarPubMed
Giacomello, A., Schimmele, L. & Dietrich, S. 2016 Wetting hysteresis induced by nanodefects. Proc. Natl Acad. Sci. 113 (3), E262E271.CrossRefGoogle ScholarPubMed
Groves, D. & Savva, N. 2021 Droplet motion on chemically heterogeneous substrates with mass transfer. I. Two-dimensional dynamics. Phys. Rev. Fluids 6 (12), 123601.CrossRefGoogle Scholar
Guan, D., Charlaix, E. & Tong, P. 2020 State and rate dependent contact line dynamics over an aging soft surface. Phys. Rev. Lett. 124 (18), 188003.CrossRefGoogle ScholarPubMed
Guan, D., Wang, Y.J., Charlaix, E. & Tong, P. 2016 Asymmetric and speed-dependent capillary force hysteresis and relaxation of a suddenly stopped moving contact line. Phys. Rev. Lett. 116 (6), 066102.CrossRefGoogle ScholarPubMed
Hatipogullari, M., Wylock, C., Pradas, M., Kalliadasis, S. & Colinet, P. 2019 Contact angle hysteresis in a microchannel: statics. Phys. Rev. Fluids 4 (4), 044008.CrossRefGoogle Scholar
Hessling, D., Xie, Q. & Harting, J. 2017 Diffusion dominated evaporation in multicomponent lattice Boltzmann simulations. J. Chem. Phys. 146 (5), 054111.CrossRefGoogle ScholarPubMed
Huang, H., Sukop, M.C. & Lu, X.-Y. 2015 Multiphase lattice Boltzmann methods: theory and application. Wiley–Blackwell.CrossRefGoogle Scholar
Iwamatsu, M. 2006 Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces. J. Colloid Interface Sci. 297 (2), 772777.CrossRefGoogle ScholarPubMed
Joanny, J.F. & De Gennes, P.G. 1984 A model for contact angle hysteresis. J. Chem. Phys. 81 (1), 552562.CrossRefGoogle Scholar
Kusumaatmaja, H., Hemingway, E.J. & Fielding, S.M. 2016 Moving contact line dynamics: from diffuse to sharp interfaces. J. Fluid Mech. 788, 209227.CrossRefGoogle Scholar
Kusumaatmaja, H. & Yeomans, J.M. 2007 Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23 (11), 60196032.CrossRefGoogle ScholarPubMed
Ledesma-Aguilar, R., Vella, D. & Yeomans, J.M. 2014 Lattice-Boltzmann simulations of droplet evaporation. Soft Matter 10 (41), 82678275.CrossRefGoogle ScholarPubMed
Lhermerout, R. & Davitt, K. 2018 Controlled defects to link wetting properties to surface heterogeneity. Soft Matter 14 (42), 86438650.CrossRefGoogle ScholarPubMed
Marmur, A. 1994 a Contact angle hysteresis on heterogeneous smooth surfaces. J. Colloid Interface Sci. 168 (1), 4046.CrossRefGoogle Scholar
Marmur, A. 1994 b Thermodynamic aspects of contact angle hysteresis. Adv. Colloid Interface Sci. 50, 121141.CrossRefGoogle Scholar
Marmur, A. 2009 Solid-surface characterization by wetting. Annu. Rev. Mater. Res. 39, 473489.CrossRefGoogle Scholar
Marmur, A. & Bittoun, E. 2009 When Wenzel and Cassie are right: reconciling local and global considerations. Langmuir 25 (3), 12771281.CrossRefGoogle ScholarPubMed
McHale, G. 2007 Cassie and Wenzel: were they really so wrong? Langmuir 23 (15), 82008205.CrossRefGoogle ScholarPubMed
Meiron, T.S., Marmur, A. & Saguy, I.S. 2004 Contact angle measurement on rough surfaces. J. Colloid Interface Sci. 274 (2), 637644.CrossRefGoogle ScholarPubMed
Montes Ruiz-Cabello, F.J., Rodríguez-Valverde, M.A., Marmur, A. & Cabrerizo-Vílchez, M.A. 2011 Comparison of sessile drop and captive bubble methods on rough homogeneous surfaces: a numerical study. Langmuir 27 (15), 96389643.CrossRefGoogle ScholarPubMed
Nadkarni, G.D. & Garoff, S. 1992 An investigation of microscopic aspects of contact angle hysteresis: pinning of the contact line on a single defect. Europhys. Lett. 20 (6), 523528.CrossRefGoogle Scholar
Orejon, D., Sefiane, K. & Shanahan, M.E.R. 2011 Stick-slip of evaporating droplets: substrate hydrophobicity and nanoparticle concentration. Langmuir 27 (21), 1283412843.CrossRefGoogle ScholarPubMed
Ozcelik, H.G., Satiroglu, E. & Barisik, M. 2020 Size dependent influence of contact line pinning on wetting of nano-textured/patterned silica surfaces. Nanoscale 12 (41), 2137621391.CrossRefGoogle ScholarPubMed
Panchagnula, M.V. & Vedantam, S. 2007 Comment on how Wenzel and Cassie were wrong by Gao and McCarthy. Langmuir 23 (26), 1324213242.CrossRefGoogle Scholar
Perrin, H., Lhermerout, R., Davitt, K., Rolley, E. & Andreotti, B. 2016 Defects at the nanoscale impact contact line motion at all scales. Phys. Rev. Lett. 116 (18), 184502.CrossRefGoogle ScholarPubMed
Popov, Y.O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71 (3), 036313.CrossRefGoogle ScholarPubMed
Pradas, M., Savva, N., Benziger, J.B., Kevrekidis, I.G. & Kalliadasis, S. 2016 Dynamics of fattening and thinning 2d sessile droplets. Langmuir 32 (19), 47364745.CrossRefGoogle ScholarPubMed
Priest, C., Sedev, R. & Ralston, J. 2007 Asymmetric wetting hysteresis on chemical defects. Phys. Rev. Lett. 99 (2), 026103.CrossRefGoogle ScholarPubMed
Priest, C., Sedev, R. & Ralston, J. 2013 A quantitative experimental study of wetting hysteresis on discrete and continuous chemical heterogeneities. Colloid Polym. Sci. 291 (2), 271277.CrossRefGoogle Scholar
Quéré, D. 2008 Wetting and roughness. Annu. Rev. Mater. Res. 38, 7199.CrossRefGoogle Scholar
Ramos, S.M.M., Charlaix, E., Benyagoub, A. & Toulemonde, M. 2003 Wetting on nanorough surfaces. Phys. Rev. E 67 (3), 031604.CrossRefGoogle ScholarPubMed
Reyssat, M. & Quéré, D. 2009 Contact angle hysteresis generated by strong dilute defects. J. Phys. Chem. B 113 (12), 39063909.CrossRefGoogle ScholarPubMed
Savva, N., Groves, D. & Kalliadasis, S. 2019 Droplet dynamics on chemically heterogeneous substrates. J. Fluid Mech. 859, 321361.CrossRefGoogle Scholar
Savva, N. & Kalliadasis, S. 2013 Droplet motion on inclined heterogeneous substrates. J. Fluid Mech. 725, 462491.CrossRefGoogle Scholar
Savva, N., Kalliadasis, S. & Pavliotis, G.A. 2010 Two-dimensional droplet spreading over random topographical substrates. Phys. Rev. Lett. 104 (8), 084501.CrossRefGoogle ScholarPubMed
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47 (3), 18151819.CrossRefGoogle ScholarPubMed
Shan, X. & Doolen, G. 1995 Multicomponent Lattice-Boltzmann model with interparticle interaction. J. Stat. Phys. 81 (1), 379393.CrossRefGoogle Scholar
Wang, X.-P., Qian, T. & Sheng, P. 2008 Moving contact line on chemically patterned surfaces. J. Fluid Mech. 605, 5978.CrossRefGoogle Scholar
Wang, Y.J., Guo, S., Chen, H.-Y. & Tong, P. 2016 Understanding contact angle hysteresis on an ambient solid surface. Phys. Rev. E 93 (5), 052802.CrossRefGoogle Scholar
Wenzel, R.N. 1936 Resistance of solid surfaces to wetting by water. Ind. Engng Chem. 28 (8), 988994.CrossRefGoogle Scholar
Wu, Y., Wang, F., Selzer, M. & Nestler, B. 2019 Droplets on chemically patterned surface: a local free-energy minima analysis. Phys. Rev. E 100 (4), 041102.CrossRefGoogle ScholarPubMed
Xie, Q. & Harting, J. 2019 The effect of the liquid layer thickness on the dissolution of immersed surface droplets. Soft Matter 15 (32), 64616468.CrossRefGoogle ScholarPubMed
Xu, X. & Wang, X. 2011 Analysis of wetting and contact angle hysteresis on chemically patterned surfaces. SIAM J. Appl. Math. 71 (5), 17531779.CrossRefGoogle Scholar
Zhang, J., Huang, H. & Lu, X.-Y. 2019 Pinning-depinning mechanism of the contact line during evaporation of nanodroplets on heated heterogeneous surfaces: a molecular dynamics simulation. Langmuir 35 (19), 63566366.CrossRefGoogle ScholarPubMed
Zhang, J., Müller-Plathe, F. & Leroy, F. 2015 Pinning of the contact line during evaporation on heterogeneous surfaces: slowdown or temporary immobilization? Insights from a nanoscale study. Langmuir 31 (27), 75447552.CrossRefGoogle ScholarPubMed
Ziegler, D.P. 1993 Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys. 71 (5), 11711177.CrossRefGoogle Scholar