Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T09:10:33.196Z Has data issue: false hasContentIssue false

Weakly nonlinear oscillations of nearly inviscid axisymmetric liquid bridges

Published online by Cambridge University Press:  26 April 2006

José A. NicoláS
Affiliation:
ETSI Aeronáuticos, Universidad Politécnica de Madrid, 28040-Madrid, Spain
José M. Vega
Affiliation:
ETSI Aeronáuticos, Universidad Politécnica de Madrid, 28040-Madrid, Spain

Abstract

A weakly nonlinear analysis is presented of the small oscillations of nearly inviscid liquid bridges subjected to almost resonant axial vibrations of the disks. An amplitude equation is derived for the evolution of the complex amplitude of the oscillations that exhibits hysteresis and period doublings. We also analyse the steady streaming in the bulk forced by the oscillatory boundary layers near the disks; the boundary layer near the free surface produces no forcing terms. In particular some experimentally observed patterns are explained, and some new, non-observed ones are predicted. We conclude that the structure of this steady flow is not the appropriate one to counterbalance steady thermocapillary convection, but our results indicate how to get the desired counterbalancing effect.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anilkumar, A. V., Grugel, R.N., Shen, X. P., Lee, C. P. & Wang, T. G. 1993 Control of thermo-capillary convection in a liquid bridge by vibration. J. Appl. Phys. 73, 41654170.Google Scholar
Batchelor, G. K. 1967 Introduction to Fluid Dynamics. Cambridge University Press.
Borkar, A. & Tsamopoulos, J. 1991 Boundary layer analysis of the dynamics of axisymmetric capillary bridges. Phys. Fluids A 3, 28662874.Google Scholar
Brown, R. 1988 Theory of transport processes in single crystal growth from the melt. AIChE J. 34, 881911.Google Scholar
Chen, T. Y. & Tsamopoulos, J. A. 1993 Nonlinear dynamics of capillary bridges: theory. J. Fluid Mech. 255, 373409.Google Scholar
Chen, T. Y., Tsamopoulos, J. A. & Good, R. J. 1992 Capillary bridges between parallel and non-parallel surfaces and their stability. J. Colloid Interface Sci. 151, 4969.Google Scholar
DePaoli, D. W., Feng, J. Q., Basaran, O. A. & Scott, T. C. 1995 Hysteresis in forced oscillations of pendant drops. Phys. Fluids 7, 11811183.Google Scholar
Fowle, A. A., Wang, C. A. & Strong, P. F. 1979 Experiments on the stability of conical and cylindrical columns at low Bond numbers. Arthur D. Little Co.
Grasman, J. 1987 Asymptotic Methods for Relaxation Oscillations and Applications. Springer-Verlag.
Higuera, M. 1996 Oscilaciones Débilmente no Lineales en Puentes Líquidos no Axilsimétricos. Doctoral Thesis, Universidad Politécnica de Madrid. In progress.
Higuera, M., Nicolás, J. A. & Vega, J. M. 1994 Linear oscillations of weakly dissipative axisymmetric liquid bridges. Phys. Fluids A 6, 438450.Google Scholar
Jurish, M. & Löser, W. 1990 Analysis of periodic non-rotational W striations in Mo single crystals due to non-steady thermocapillary convection. J. Cryst. Growth 102, 214222.Google Scholar
Kamotani, Y. S., Ostrach, S. & Vargas, M. 1984 Oscillatory thermocapillary convection in a simulated floating-zone configuration. J. Cryst. Growth 66, 8390.Google Scholar
Keller, H. B. 1987 Lectures on Numerical Methods in Bifurcation Problems. Tata Institute of Fundamental Research, Bombay.
Laplace, P. S. 1805 Theory of Capillary Attractions, supplement to the Tenth Book of Celestial Mechanics. Reprinted by Chelsea, 1966.
Mancebo, F. J., Nicolás, J. A. & Vega, J. M. 1996 Chaotic mechanical oscillations in a nearly-inviscid liquid bridge at second-order 2:1 resonance, in preparation.
Mei, C. C. & Liu, L. F. 1973 The damping of surface gravity waves in a bounded liquid. J. Fluid Mech. 59, 239256.Google Scholar
Melrose, J. C. 1966 Model calculations for capillary condensation. AIChE J. 12, 986994.Google Scholar
Meseguer, J. 1983 The breaking of axisymmetric slender liquid bridges. J. Fluid Mech. 130, 123151.Google Scholar
Meseguer, J. & Perales, J. M. 1991 A linear analysis of g-jitter effects on viscous cylindrical liquid bridges. Phys. Fluids A 3, 23322336.Google Scholar
Mollot, D. J., Tsamopoulos, J., Chen, T. Y. & Ashgriz, N. 1993 Nonlinear dynamics of capillary bridges: experiments. J. Fluid Mech. 255, 411435.Google Scholar
Nicolás, J. A. 1992 Hydrodynamic stability of high-viscosity cylindrical liquid bridges. Phys. Fluids A 4, 17.Google Scholar
Nicolás, J. A. & Vega, J. M. 1996 Linear viscous oscillations of axisymmetric liquid bridges, in preparation.
Nicolás, J. A., Rivas, D. & Vega, J. M. 1996a The interaction of thermocapillary convection and low-frequency vibration in nearly-inviscid liquid bridges. Z. Angew. Math. Phys. (submitted).Google Scholar
Nicolás, J. A., Rivas, D. & Vega, J. M. 1996b On the steady streaming flow due to high-frequency vibration in nearly-inviscid liquid bridges. J. Fluid Mech. (submitted).Google Scholar
Perales, J. M. & Meseguer, J. 1992 Theoretical and experimental study of vibration of axisymmetric viscous liquid bridges. Phys. Fluids A 4, 11101130.Google Scholar
Perko, L. 1991 Differential Equations and Dynamical Systems. Springer-Verlag
Plateau, J. A. F. 1849 Sur les figures d'equilibre d'une masse liquide sans pesanteur. Mem. Acad. R. Belgique, Nonv. Ser. 23.Google Scholar
Plateau, J. A. F. 1863 Experimental and theoretical researches on the figures of equilibrium of a liquid mass withdrawn from the action of gravity. Transl. in Ann. Rep. Smithsonian Inst. (1863–1866) 207285.
Preiser, F., Schwabe, D. & Sharman, A. 1983 Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface. J. Fluid Mech. 126, 545567.Google Scholar
Rayleigh, Lord 1879 On the instability of jets. Proc. London Math. Soc. 10, 413.Google Scholar
Rayleigh, Lord 1892 On the stability of cylindrical fluid surfaces. Phil. Mag. 34, 177180.Google Scholar
Rivas, D. & Meseguer, J. 1984 One-dimensional self-similar solution of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech. 138, 417429.Google Scholar
Sanz, A. 1985 The influence of the outer bath in the dynamics of axisymmetric liquid bridges. J. Fluid Mech. 156, 101140.Google Scholar
Sanz, A. & Díez, J. L. 1989 Non-axisymmetric oscillation of liquid bridges. J. Fluid Mech. 205, 503521.Google Scholar
Schulkes, R. M. S. M. 1993a Nonlinear dynamics of liquid columns: A comparative study. Phys. Fluids A 5, 21212130.Google Scholar
Schulkes, R. M. S. M. 1993b Dynamics of liquid jets revisited. J. Fluid Mech. 250, 635651.Google Scholar
Tsamopoulos, J., Chen, T. & Borkar, A. 1992 Viscous oscillations of capillary bridges. J. Fluid Mech. 235, 579609.Google Scholar
Ursell, F. 1952 Edge waves on a sloping beach. Proc. R. Soc. Lond. A 214, 7997.Google Scholar
Young, X. 1805 Essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. A 306, 347370.Google Scholar
Zhang, Y. & Alexander, J. I. D. 1990 Sensitivity of liquid bridges subjected to axial residual acceleration. Phys. Fluids A 2, 19661974.Google Scholar
Zasadzinski, J. N., Sweeney, J. B., Davis, H. T. & Scriven, L. E. 1987 Finite element calculation of fluid menisci and thin-films in model porous media. J. Colloid Interface Sci. 119, 108116.Google Scholar
Supplementary material: PDF

Nicolás and Vega supplementary material

Supplementary Material

Download Nicolás and Vega supplementary material(PDF)
PDF 2 MB