Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T18:38:44.697Z Has data issue: false hasContentIssue false

A weakly nonlinear evolution model for long internal waves in a large lake

Published online by Cambridge University Press:  26 May 2010

TAKAHIRO SAKAI*
Affiliation:
Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1191, USA
L. G. REDEKOPP
Affiliation:
Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1191, USA
*
Email address for correspondence: [email protected]

Abstract

A wind-forced weakly nonlinear weakly dispersive evolution model is derived for a continuously stratified circular lake of slowly varying depth under the effect of the Earth's rotation. The model was numerically integrated to investigate the evolution of long internal waves of vertical mode one for various sets of environmental parameters. It is demonstrated that the Kelvin wave steepens as it propagates, and the steepened front subsequently generates a train of oscillatory waves. It is demonstrated that Poincaré waves do not steepen, but their amplitude is modulated in an oscillatory manner with time, exhibiting a pseudo recurrence character. The model was applied to the wind forced problem, confirming that Kelvin and Poincaré waves are the dominant response. Energy partition among Kelvin and Poincaré wave modes is estimated as a function of wind-forcing parameters. For large lakes, the most significant wave amplitude is found in the Kelvin wave mode, but the gross field energy is most significantly contained in Poincaré wave modes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antenucci, J. & Imberger, J. 2001 Energetics of long internal gravity waves in large lakes. Limnol. Oceanogr. 46 (7), 17601773.CrossRefGoogle Scholar
Antenucci, J., Imberger, J. & Saggio, A. 2000 Seasonal evolution of the basin-scale internal wave field in a large stratified lake. Limnol. Oceanogr. 45 (7), 16211638.CrossRefGoogle Scholar
Beletsky, D. & O'Connor, W. P. 1997 Numerical simulation of internal Kelvin waves and coastal upwelling fronts. J. Phys. Oceanogr. 27, 11971215.2.0.CO;2>CrossRefGoogle Scholar
Bennett, J. R. 1973 A theory of large-amplitude Kelvin waves. J. Phys. Oceanogr. 3, 5760.2.0.CO;2>CrossRefGoogle Scholar
Boegman, L., Ivey, G. N. & Imberger, J. 2005 a The degeneration of internal waves in lakes with sloping topography. Limnol. Oceanogr. 50 (5), 16201637.CrossRefGoogle Scholar
Boegman, L., Ivey, G. N. & Imberger, J. 2005 b The energetics of large-scale internal wave degeneration in lakes. J. Fluid Mech. 531, 159180.CrossRefGoogle Scholar
Boyd, J. P. 1998 High order models for the nonlinear shallow water wave equations on the equatorial beta-plane with application to Kelvin wave frontogenesis. Dyn. Atmos. Oceans 28, 6991.CrossRefGoogle Scholar
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods, 2nd edn.Dover.Google Scholar
Csanady, G. T. 1967 Large-scale motion in the Great Lakes. J. Geophys. Res. 72 (16), 41514162.CrossRefGoogle Scholar
Csanady, G. T. 1968 Wind-driven summer circulation in the Great Lakes. J. Geophys. Res. 73 (7), 25792589.CrossRefGoogle Scholar
Csanady, G. T. 1972 Response of large stratified lakes to wind. J. Phys. Oceanogr. 2 (1), 313.2.0.CO;2>CrossRefGoogle Scholar
Csanady, G. T. 1975 Hydrodynamics of large lakes. Annu. Rev. Fluid Mech. 7, 357386.CrossRefGoogle Scholar
Farmer, D. M. 1978 Observations of long nonlinear internal waves in lake. J. Phys. Oceanogr. 8, 6373.2.0.CO;2>CrossRefGoogle Scholar
Fedorov, A. V. & Melville, W. K. 1995 Propagation and breaking of nonlinear Kelvin waves. J. Phys. Oceanogr. 25, 25182531.2.0.CO;2>CrossRefGoogle Scholar
Fedorov, A. V. & Melville, W. K. 2000 Kelvin fronts on the equatorial thermocline. J. Phys. Oceanogr. 30, 16921705.2.0.CO;2>CrossRefGoogle Scholar
de la Fuente, A., Shimizu, K., Imberger, J. & Niño, Y. 2008 The evolution of internal waves in a rotating, stratified, circular basin and the influence of weakly nonlinear and nonhydrostatic accelarations. Limnol. Oceanogr. 53 (6), 27382748.CrossRefGoogle Scholar
Gerkema, T. 2003 Development of internal solitary waves in various thermocline regimes: a multi-modal approach. Nonlinear Process. Geophys. 10, 397405.CrossRefGoogle Scholar
Griffiths, S. D. & Grimshaw, R. H. J. 2007 Internal tide generation at the continental shelf modelled using a modal decomposition: two-dimensional results. J. Phys. Oceanogr. 37, 428451.CrossRefGoogle Scholar
Grimshaw, R. 1985 Evolution equations for weakly nonlinear, long internal waves in a rotating fluid. Stud. Appl. Math 73, 133.CrossRefGoogle Scholar
Helfrich, K. R. 1992 Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech. 243, 133154.CrossRefGoogle Scholar
Hodges, B. R., Imberger, J., Saggio, A. & Winters, K. B. 2000 modelling basin-scale internal waves in a stratified lake. Limnol. Oceanogr. 45 (7), 16031620.CrossRefGoogle Scholar
Horn, D. A., Imberger, J. & Ivey, G. N. 2001 The degeneration of large-scale interfacial gravity waves in lakes. J. Fluid Mech. 434, 181207.CrossRefGoogle Scholar
Horn, D. A., Imberger, J., Ivey, G. N. & Redekopp, L. G. 2002 A weakly nonlinear model of long internal waves in closed basins. J. Fluid Mech. 467, 269287.CrossRefGoogle Scholar
Hunkins, K. & Fliegel, M. 1973 Internal undular surges in Seneca Lake: a natural occurrence of solitons. J. Geophys. Res. 78, 539548.CrossRefGoogle Scholar
Hüttemann, H. & Hutter, K. 2001 Boroclinic solitary waves in a two-layer fluid system with diffusive interface. Exp. fluids 30, 317326.Google Scholar
Lamb, H. Sir 1932 Hydrodynamics, 6th edn.Dover.Google Scholar
Matsushima, T. & Marcus, P. S. 1995 A spectral method for polar coordinates. J. Comput. Phys. 120, 365374.CrossRefGoogle Scholar
Maxworthy, T. 1983 Experiments on solitary internal Kelvin waves. J. Fluid Mech. 129, 365383.CrossRefGoogle Scholar
Melville, W. K., Tomasson, G. G. & Renouard, D. P. 1989 On the stability of Kelvin waves. J. Fluid Mech. 206, 123.CrossRefGoogle Scholar
Michallet, H. & Ivey, G. N. 1999 Experiments on mixing due to internal solitary waves. J. Geophys. Res. 104 (C6), 1346713477.CrossRefGoogle Scholar
Ripa, P. 1982 Nonlinear wave–wave interactions in a one-layer reduced-gravity model on the equatorial β-plane. J. Phys. Oceanogr. 12, 97111.2.0.CO;2>CrossRefGoogle Scholar
Rueda, J. R., Schladow, S. G. & Pálmarsson, S. Ó. 2003 Basin-scale internal wave dynamics during a winter cooling period in a large lake. J. Geophys. Res. 108 (C3), 3907.CrossRefGoogle Scholar
Sakai, T. & Redekopp, L. G. 2009 a An application of one-sided Jacobi polynomials for spectral modelling of vector fields in polar coordinates. J. Comput. Phys. 228, 70697085.CrossRefGoogle Scholar
Sakai, T. & Redekopp, L. G. 2009 b A weakly nonlinear model for multi-modal evolution of wind-generated long internal waves in a closed basin. Nonlinear Process. Geophys. 16, 487502.CrossRefGoogle Scholar
Sakai, T. & Redekopp, L. G. 2010 A parametric study of the generation and degeneration of wind-forced, long internal waves in narrow lakes. J. Fluid Mech. 645, 315344.CrossRefGoogle Scholar
Schwab, D. J. & Beletsky, D. 2003 Relative effects of wind stress curl, topography, and stratification on large-scale circulation in Lake Michigan. J. Geophys. Res. 108 (C2), 3044.CrossRefGoogle Scholar
Shimizu, K. & Imberger, J. 2007 Horizontal structure and excitation of primary motions in a strongly stratified lake. Limnol. Oceanogr. 52 (6), 26412655.CrossRefGoogle Scholar
Stashchuk, N., Vlasenko, V. & Hutter, K. 2005 Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water. Nonlinear Process. Geophys. 12, 955964.CrossRefGoogle Scholar
Stocker, R. & Imberger, J. 2003 Energy partitioning and horizontal dispersion in a stratified rotating lake. J. Phys. Oceanogr. 33, 512529.2.0.CO;2>CrossRefGoogle Scholar
Tomasson, G. G. & Melville, W. K. 1990 Nonlinear and dispersive effects in Kelvin waves. Phys. Fluids A 2 (2), 189193.CrossRefGoogle Scholar
Verkley, W. T. M. 1997 A spectral model for two-dimensional incompressible fluid flow in a circular basin. Part I. Mathematical formulation. J. Comput. Phys. 136, 100114.CrossRefGoogle Scholar
Vlasenko, V. & Hutter, K. 2001 Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Process. Geophys. 8, 223239.CrossRefGoogle Scholar
Vlasenko, V. & Hutter, K. 2002 Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr. 32, 17791793.2.0.CO;2>CrossRefGoogle Scholar
Wake, G. W., Gula, J. & Ivey, G. N. 2004 Periodic forcing of baroclinic basin-scale waves in a rotating stratified basin. In Proceedings of 15th Australasian Fluid Mechanics Conference, The University of Sydney, Sydney, Australia.Google Scholar
Wake, G. W., Ivey, G. N. & Imberger, J. 2005 The temporal evolution of baroclinic basin-scale waves in a rotating circular basin. J. Fluid Mech. 523, 367392.CrossRefGoogle Scholar
Wang, Y. & Hutter, K. 1998 A semi-implicit semispectral primitive equation model for lake circulation dynamics and its stability performance. J. Comput. Phys. 139, 209241.CrossRefGoogle Scholar
Zabusky, N. J. & Kruskal, M. D. 1965 Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240243.CrossRefGoogle Scholar