Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T20:41:31.129Z Has data issue: false hasContentIssue false

Weakly nonlinear analysis of thermoacoustic bifurcations in the Rijke tube

Published online by Cambridge University Press:  22 September 2016

Alessandro Orchini*
Affiliation:
Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, UK
Georgios Rigas
Affiliation:
Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, UK
Matthew P. Juniper
Affiliation:
Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, UK
*
Email address for correspondence: [email protected]

Abstract

In this study we present a theoretical weakly nonlinear framework for the prediction of thermoacoustic oscillations close to Hopf bifurcations. We demonstrate the method for a thermoacoustic network that describes the dynamics of an electrically heated Rijke tube. We solve the weakly nonlinear equations order by order, discuss their contribution on the overall dynamics and show how solvability conditions at odd orders give rise to Stuart–Landau equations. These equations, combined together, describe the nonlinear dynamical evolution of the oscillations’ amplitude and their frequency. Because we retain the contribution of several acoustic modes in the thermoacoustic system, the use of adjoint methods is required to derive the Landau coefficients. The analysis is performed up to fifth order and compared with time domain simulations, showing good agreement. The theoretical framework presented here can be used to reduce the cost of investigating oscillations and subcritical phenomena close to Hopf bifurcations in numerical simulations and experiments and can be readily extended to consider, e.g. the weakly nonlinear interaction of two unstable thermoacoustic modes.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ananthkrishnan, N., Deo, S. & Culick, F. E. C. 2005 Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber. Combust. Sci. Technol. 177, 221248.Google Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
Cósić, B., Bobusch, B. C., Moeck, J. P. & Paschereit, C. O. 2012 Open-loop control of combustion instabilities and the role of the flame response to two-frequency forcing. Trans. ASME J. Engng Gas Turbines Power 134, 061502.Google Scholar
Culick, F. E. C.2006 Unsteady motions in combustion chambers for propulsion systems, AGARDograph, RTO AG-AVT-039.Google Scholar
Das, S. L. & Chatterjee, A. 2002 Multiple scales without Center Manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323335.CrossRefGoogle Scholar
Dowling, A. P. 1995 The calculation of thermoacoustic oscillations. J. Sound Vib. 180 (4), 557581.Google Scholar
Dowling, A. P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346, 271290.Google Scholar
Engelborghs, K., Luzyanina, T. & Roose, D. 2002 Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28, 121.CrossRefGoogle Scholar
Flandro, G. A., Fischbach, S. R. & Majdalani, J. 2007 Nonlinear rocket motor stability prediction: limit amplitude, triggering, and mean pressure shift. Phys. Fluids 19, 094101.Google Scholar
Fujimura, K. 1991 Methods of Centre Manifold and multiple scales in the theory of weakly nonlinear stability for fluid motions. Proc. R. Soc. Lond. A 434, 719733.Google Scholar
Gambino, G., Lombardo, M. C. & Sammartino, M. 2012 Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion. Math. Comput. Simul. 82, 11121132.Google Scholar
Gelb, A. & Velde, W. E. C. 1968 Multiple-Input Describing Functions and Nonlinear System Design. McGraw-Hill.Google Scholar
Ghirardo, G., Juniper, M. P. & Moeck, J. P2015 Stability criteria for standing and spinning waves in annular combustors. In Proceedings of ASME Turbo Expo, GT2015–43127. ASME.Google Scholar
Gotoda, H., Nikimoto, H., Miyano, T. & Tachibana, S. 2011 Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos 21, 013124.CrossRefGoogle Scholar
Gustavsen, B. & Semlyen, A. 1999 Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 14 (3), 10521061.Google Scholar
Heckl, M. 1990 Non-linear acoustic effect in the Rijke tube. Acustica 72, 6371.Google Scholar
Jahnke, C. C. & Culick, F. E. C. 1994 Application of dynamical systems theory to nonlinear combustion instabilities. J. Propul. Power 10 (4), 508517.CrossRefGoogle Scholar
Jegadeesan, V. & Sujith, R. I. 2013 Experimental investigation of noise induced triggering in thermoacoustic systems. Proc. Combust. Inst. 34, 31753183.CrossRefGoogle Scholar
Juniper, M. P. 2011 Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass transition. J. Fluid Mech. 667, 272308.Google Scholar
Juniper, M. P. 2012 Weakly nonlinear analysis of thermoacoustic oscillations. In 19th ICSV, pp. 15. IIAV.Google Scholar
Kabiraj, L. & Sujith, R. I. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.Google Scholar
Kashinath, K., Waugh, I. C. & Juniper, M. P. 2014 Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. J. Fluid Mech. 761, 126.Google Scholar
King, L. V. 1914 On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires, with application to hot-wire anemometry. Phil. Trans. R. Soc. Lond. A 214, 373432.Google Scholar
Landau, L. D. 1944 On the problem of turbulence. C. R. Acad. Sci. URSS 44 (31), 1314.Google Scholar
Lieuwen, T. C. & Yang, V.2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. AIAA.Google Scholar
Lighthill, M. J. 1954 The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. Proc. R. Soc. Lond. A 224, 123.Google Scholar
Magri, L. & Juniper, M. P. 2013 A theoretical approach for passive control of thermoacoustic oscillations: application to ducted flames. Trans. ASME: J. Engng Gas Turbines Power 135, 091604.Google Scholar
Mariappan, S., Sujith, R. I. & Schmid, P. J. 2015 Experimental investigation of non-normality of thermoacoustic interaction in an electrically heated Rijke tube. Int. J. Spray Combust. 7 (4), 315352.Google Scholar
Matveev, K.2003 Thermoacoustic instabilities in the Rijke tube: experiments and modeling. PhD thesis, California Institute of Technology.Google Scholar
Meliga, P., Chomaz, J.-M. & Sipp, D. 2009 Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159189.CrossRefGoogle Scholar
Noiray, N., Bothien, M. & Schuermans, B. 2011 Investigation of azimuthal staging concepts in annular gas turbines. Combust. Theor. Model. 15 (5), 585606.Google Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.Google Scholar
Noiray, N. & Schuermans, B. 2013 On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers. Proc. R. Soc. Lond. A 469, 20120535.Google Scholar
Oden, J. T. & Demkowicz, L. F. 2010 Applied Functional Analysis, 2nd edn. CRC Press.CrossRefGoogle Scholar
Orchini, A.2016 Modelling and analysis of nonlinear thermoacoustic systems using frequency and time domain methods. PhD thesis, University of Cambridge.Google Scholar
Orchini, A., Illingworth, S. J. & Juniper, M. P. 2015 Frequency domain and time domain analysis of thermoacoustic oscillations with wave-based acoustics. J. Fluid Mech. 775, 387414.Google Scholar
Paschereit, C. O. & Gutmark, E. 2008 Combustion instability and emission control by pulsating fuel injection. J. Turbomach. 130, 011012.CrossRefGoogle Scholar
Polifke, W. 2011 Low-order analysis for aero- and thermo-acoustic instabilities. In Advances in Aero-Acoustics and Thermo-Acoustics, Lecture Series 2011-01. Von Karman Institute for Fluid Dynamics.Google Scholar
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard-von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.Google Scholar
Rigas, G., Jamieson, N. P., Li, L. K. B. & Juniper, M. P. 2015a Experimental sensitivity analysis and control of thermoacoustic systems. J. Fluid Mech. 787, R1.Google Scholar
Rigas, G., Morgans, A. S., Brackston, R. D. & Morrison, J. F. 2015b Diffusive dynamics and stochastic models of turbulent axisymmetric wakes. J. Fluid Mech. 778, R2.Google Scholar
Rigas, G., Morgans, A. S. & Morrison, J. F. 2016 Weakly nonlinear modelling of a forced turbulent axisymmetric wake. J. Fluid Mech. (submitted).Google Scholar
Rosales, R. 2004 Hopf bifurcations. In MIT OpenCourseWare 18.385J/2.036J, Lecture Notes on Nonlinear Dynamics and Chaos. MIT. Available at: http://ocw.mit.edu/ courses/mathematics/18-385j-nonlinear-dynamics-and-chaos-fall-2004/lecture-notes/.Google Scholar
Selimefendigil, F., Föeller, S. & Polifke, W. 2012 Nonlinear identification of unsteady heat transfer of a cylinder in pulsating cross flow. Comput. Fluids 53, 114.CrossRefGoogle Scholar
Sieber, J., Engelborghs, K., Luzyanina, T., Samaey, G. & Roose, D. 2015 Bifurcation analysis of delay differential equations. In DDE-BIFTOOL v. 3.1. Manual, arXiv:1406.7144.Google Scholar
Sipp, D. 2012 Open-loop control of cavity oscillations with harmonic forcings. J. Fluid Mech. 708, 439468.CrossRefGoogle Scholar
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.Google Scholar
Stow, S. R. & Dowling, A. P. 2001 Thermoacoustic oscillations in an annular combustor. In Proceedings of ASME Turbo Expo GT–0037. ASME.Google Scholar
Strogatz, S. H. 2015 Nonlinear Dynamics and Chaos, 2nd edn. Westview Press.Google Scholar
Subramanian, P., Sujith, R. I. & Wahi, P. 2013 Subcritical bifurcation and bistability in thermoacoustic systems. J. Fluid Mech. 715, 210238.Google Scholar
Waugh, I. C., Kashinath, K. & Juniper, M. P. 2014 Matrix-free continuation of limit cycles and their bifurcations for a ducted premixed flame. J. Fluid Mech. 759, 127.Google Scholar
Witte, A. & Polifke, W.2015 Heat transfer frequency response of a cylinder in pulsating laminar cross flow. In 17th STAB-Workshop, Göttingen. Available at: https://www.researchgate.net/ publication/283725457_Heat_Transfer_Frequency_Response_of_a_Cylinder_in_Pulsating_ Laminar_Cross_Flow.Google Scholar