Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T06:30:12.474Z Has data issue: false hasContentIssue false

Water impact of a surface-patterned disk

Published online by Cambridge University Press:  15 March 2021

Taehyun Kim
Affiliation:
Department of Mechanical Engineering, KAIST, Daejeon34141, Republic of Korea
Donghyun Kim
Affiliation:
Department of Mechanical Engineering, KAIST, Daejeon34141, Republic of Korea
Daegyoum Kim*
Affiliation:
Department of Mechanical Engineering, KAIST, Daejeon34141, Republic of Korea
*
Email address for correspondence: [email protected]

Abstract

This study experimentally investigates the effect of a surface pattern applied to a flat disk on the impact force during water entry. A macroscale mesh-like pattern with square holes is applied to the bottom surface of a flat disk, and the shape of the pattern and the falling speed of the disk are varied to find a universal parameter that characterizes the impact force. When a surface-patterned disk impacts a free surface, air is trapped inside the holes, and the subsequent compression and depressurization of the trapped air is accompanied by a rise and fall in the impact force. Under the cushioning effect of the trapped air, the peak of the impact force decreases and its period extends as the total volume of holes in the surface pattern increases. These changes are independent of the specific shape of the pattern. In contrast, the impulse exerted on the disk remains similar, regardless of the total volume of holes and the pattern. We conduct a simple theoretical analysis based on the added mass of the disk to estimate the impact force, and confirm the trends observed in our experiments.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrate, S. 2011 Hull slamming. Appl. Mech. Rev. 64 (6), 060803.CrossRefGoogle Scholar
Aristoff, J.M & Bush, J.W.M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 4578.CrossRefGoogle Scholar
Bergmann, R., Van Der Meer, D., Gekle, S., Van Der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.CrossRefGoogle Scholar
Bodily, K.G., Carlson, S.J. & Truscott, T.T. 2014 The water entry of slender axisymmetric bodies. Phys. Fluids 26 (7), 072108.CrossRefGoogle Scholar
Chang, B., Croson, M., Straker, L., Gart, S., Dove, C., Gerwin, J. & Jung, S. 2016 How seabirds plunge-dive without injuries. Proc. Natl Acad. Sci. USA 113 (43), 1200612011.CrossRefGoogle ScholarPubMed
Clifton, G.T., Hedrick, T.L. & Biewener, A.A. 2015 Western and Clark's grebes use novel strategies for running on water. J. Expl Biol. 218 (8), 12351243.CrossRefGoogle ScholarPubMed
Crandell, K.E., Howe, R.O. & Falkingham, P.L. 2019 Repeated evolution of drag reduction at the air–water interface in diving kingfishers. J. R. Soc. Interface 16 (154), 20190125.CrossRefGoogle ScholarPubMed
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3 (3), 180.CrossRefGoogle Scholar
Ermanyuk, E.V. & Gavrilov, N.V. 2011 Experimental study of disk impact onto shallow water. J. Appl. Mech. Tech. Phys. 52 (6), 889895.CrossRefGoogle Scholar
Ermanyuk, E.V. & Ohkusu, M. 2005 Impact of a disk on shallow water. J. Fluids Struct. 20 (3), 345357.CrossRefGoogle Scholar
Floyd, S., Keegan, T., Palmisano, J. & Sitti, M. 2006 A novel water running robot inspired by basilisk lizards. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5430–5436. IEEE.CrossRefGoogle Scholar
Floyd, S. & Sitti, M. 2008 Design and development of the lifting and propulsion mechanism for a biologically inspired water runner robot. IEEE Trans. Robot. 24 (3), 698709.CrossRefGoogle Scholar
Gekle, S. & Gordillo, J.M. 2010 Generation and breakup of worthington jets after cavity collapse. Part 1. Jet formation. J. Fluid Mech. 663, 293330.CrossRefGoogle Scholar
Glasheen, J.W. & McMahon, T.A. 1996 a A hydrodynamic model of locomotion in the basilisk lizard. Nature 380 (6572), 340.CrossRefGoogle Scholar
Glasheen, J.W. & McMahon, T.A. 1996 b Vertical water entry of disks at low froude numbers. Phys. Fluids 8 (8), 20782083.CrossRefGoogle Scholar
Howison, S.D., Ockendon, J.R. & Wilson, S.K. 1991 Incompressible water-entry problems at small deadrise angles. J. Fluid Mech. 222, 215230.CrossRefGoogle Scholar
Hsieh, S.T. & Lauder, G.V. 2004 Running on water: three-dimensional force generation by basilisk lizards. Proc. Natl Acad. Sci. USA 101 (48), 1678416788.CrossRefGoogle ScholarPubMed
Huera-Huarte, F.J., Jeon, D. & Gharib, M. 2011 Experimental investigation of water slamming loads on panels. Ocean Engng 38 (11–12), 13471355.CrossRefGoogle Scholar
Jalalisendi, M., Benbelkacem, G. & Porfiri, M. 2018 Solid obstacles can reduce hydrodynamic loading during water entry. Phys. Rev. Fluids 3 (7), 074801.CrossRefGoogle Scholar
Jalalisendi, M., Shams, A., Panciroli, R. & Porfiri, M. 2015 Experimental reconstruction of three-dimensional hydrodynamic loading in water entry problems through particle image velocimetry. Exp. Fluids 56 (2), 41.CrossRefGoogle Scholar
Kapsenberg, G.K. 2011 Slamming of ships: where are we now? Phil. Trans. R. Soc. A 369 (1947), 28922919.CrossRefGoogle ScholarPubMed
von Kármán, T. 1929 The impact on seaplane floats during landing. Tech. Rep. 309313. National Advisory Committee on Aeronautics.Google Scholar
Korobkin, A. 2004 Analytical models of water impact. Eur. J. Appl. Maths 15 (6), 821838.CrossRefGoogle Scholar
Korobkin, A.A. & Pukhnachov, V.V. 1988 Initial stage of water impact. Annu. Rev. Fluid Mech. 20 (1), 159185.CrossRefGoogle Scholar
Ma, Z.H., Causon, D.M., Qian, L., Mingham, C.G., Mai, T., Greaves, D. & Raby, A. 2016 Pure and aerated water entry of a flat plate. Phys. Fluids 28 (1), 016104.CrossRefGoogle Scholar
Marston, J.O., Truscott, T.T., Speirs, N.B., Mansoor, M.M. & Thoroddsen, S.T. 2016 Crown sealing and buckling instability during water entry of spheres. J. Fluid Mech. 794, 506529.CrossRefGoogle Scholar
Mathai, V., Govardhan, R.N. & Arakeri, V.H. 2015 On the impact of a concave nosed axisymmetric body on a free surface. Appl. Phys. Lett. 106 (6), 064101.CrossRefGoogle Scholar
May, A. 1975 Water entry and the cavity-running behavior of missiles. Tech. Rep. NAVSEA Hydroballistics Advisory Committee.CrossRefGoogle Scholar
Mayer, H.C. & Krechetnikov, R. 2018 Flat plate impact on water. J. Fluid Mech. 850, 10661116.CrossRefGoogle Scholar
Moghisi, M. & Squire, P.T. 1981 An experimental investigation of the initial force of impact on a sphere striking a liquid surface. J. Fluid Mech. 108, 133146.CrossRefGoogle Scholar
Okada, S. & Sumi, Y. 2000 On the water impact and elastic response of a flat plate at small impact angles. J. Mar. Sci. Technol. 5 (1), 3139.CrossRefGoogle Scholar
Ringsberg, J.W., Heggelund, S.E., Lara, P., Jang, B.-S. & Hirdaris, S.E. 2017 Structural response analysis of slamming impact on free fall lifeboats. Mar. Struct. 54, 112126.CrossRefGoogle Scholar
Shams, A., Jalalisendi, M. & Porfiri, M. 2015 Experiments on the water entry of asymmetric wedges using particle image velocimetry. Phys. Fluids 27 (2), 027103.CrossRefGoogle Scholar
Shams, A. & Porfiri, M. 2015 Treatment of hydroelastic impact of flexible wedges. J. Fluids Struct. 57, 229246.CrossRefGoogle Scholar
Siddall, R., Ortega Ancel, A. & Kovač, M. 2017 Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface Focus 7 (1), 20160085.CrossRefGoogle ScholarPubMed
Speirs, N.B., Belden, J., Pan, Z., Holekamp, S., Badlissi, G., Jones, M. & Truscott, T.T. 2019 The water entry of a sphere in a jet. J. Fluid Mech. 863, 956968.CrossRefGoogle Scholar
Thoroddsen, S.T., Etoh, T.G., Takehara, K. & Takano, Y. 2004 Impact jetting by a solid sphere. J. Fluid Mech. 499, 139148.CrossRefGoogle Scholar
Truscott, T.T., Epps, B.P. & Belden, J. 2014 Water entry of projectiles. Annu. Rev. Fluid Mech. 46, 355378.CrossRefGoogle Scholar
Truscott, T.T., Epps, B.P. & Techet, A.H. 2012 Unsteady forces on spheres during free-surface water entry. J. Fluid Mech. 704, 173210.CrossRefGoogle Scholar
Verhagen, J.H.G 1967 The impact of a flat plate on a water surface. J. Ship Res. 11 (04), 211223.CrossRefGoogle Scholar
Vincent, L., Xiao, T., Yohann, D., Jung, S. & Kanso, E. 2018 Dynamics of water entry. J. Fluid Mech. 846, 508535.CrossRefGoogle Scholar
Wagner, H. 1932 Über stoß-und gleitvorgänge an der oberfläche von flüssigkeiten. Z. Angew. Math. Mech. 12 (4), 193215.CrossRefGoogle Scholar
Wang, J., Faltinsen, O.M. & Lugni, C. 2019 Unsteady hydrodynamic forces of solid objects vertically entering the water surface. Phys. Fluids 31 (2), 027101.CrossRefGoogle Scholar
Yari, E. & Ghassemi, H. 2016 Hydrodynamic analysis of the surface-piercing propeller in unsteady open water condition using boundary element method. Intl J. Nav. Archit. Ocean 8 (1), 2237.CrossRefGoogle Scholar
Yettou, E.-M., Desrochers, A. & Champoux, Y. 2006 Experimental study on the water impact of a symmetrical wedge. Fluid Dyn. Res. 38 (1), 47.CrossRefGoogle Scholar
Zhao, R. & Faltinsen, O. 1993 Water entry of two-dimensional bodies. J. Fluid Mech. 246, 593612.CrossRefGoogle Scholar

Kim et al. supplementary movie 1

Movie 1 for figure 2

Download Kim et al. supplementary movie 1(Video)
Video 4.7 MB

Kim et al. supplementary movie 2

Movie 2 for figure 5a

Download Kim et al. supplementary movie 2(Video)
Video 14.7 MB

Kim et al. supplementary movie 3

Movie 3 for figure 5b

Download Kim et al. supplementary movie 3(Video)
Video 40.6 MB

Kim et al. supplementary movie 4

Movie 4 for figure 6

Download Kim et al. supplementary movie 4(Video)
Video 6.6 MB