Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T13:50:07.483Z Has data issue: false hasContentIssue false

Wall effect on the bubble behaviour in highly viscous liquids

Published online by Cambridge University Press:  20 April 2006

Madeleine Coutanceau
Affiliation:
Laboratoire de Mécanique des Fluides, Université de Poitiers, France
Patrick Thizon
Affiliation:
Laboratoire de Mécanique des Fluides, Université de Poitiers, France

Abstract

A theoretical and experimental study is carried out for the problem of the wall effect experienced by a fluid body moving with a constant speed along the axis of a vertical circular tube filled with a highly viscous liquid. In the theoretical study the body is limited to being either spherical or cylindrical and an optimization process with least squares is used to write the no-slip condition on the tube wall. Comparisons between the hydrodynamic and kinematic behaviour of a rigid, liquid and gaseous body are established. Furthermore, from an experimental investigation, based upon a fine visualization technique and rising-speed measurements, the respective limits of validity of the calculations have been found in the case of an air bubble. Information concerned especially with the shape of this bubble, and the hydrodynamic field that it generates, is given for the whole domain of the bubble and tube diameter ratio ranging from no wall influence to maximum wall influence.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourot, J. M. 1969 Sur l'application d'une méthode de moindres carrés à la résolution approchée du problème aux limites, pour certaines catégories d’écoulements. J. Mec. 8 (2), 301322.Google Scholar
Bourot, J. M. 1975 Sur le calcul de l’écoulement irrotationnel et de l’écoulement de Stokes autour d'un obstacle de révolution de méridienne cardioïde; sur la structure du champ au voisinage du point de rebroussement. C.r. Acad. Sci. Paris A 281, 179182.Google Scholar
Bourot, J. M. & Sigli, D. 1970 Sur le calcul et l’étude expérimentale de l’écoulement de Stokes, autour d'une sphère progressant dans l'axe d'un cylindre quand le rapport des diamètres se rapproche de l'unité. C.r. Acad. Sci. Paris A 270, 343346.Google Scholar
Bourot, J. M. & Coutanceau, M. 1971 Sur le calcul numérique de l’écoulement de Stokes autour d'un obstacle de révolution dont la méridienne se rapproche d'un carré. C.r. Acad. Sci. Paris A 272, 627630.Google Scholar
Brenner, H. & Happel, J. 1958 Slow viscous flow past a sphere in a cylindrical tube. J. Fluid Mech. 4, 195213.Google Scholar
Collins, R. 1967 The effect of a containing cylindrical boundary on the velocity of a large gas bubble in a liquid. J. Fluid Mech. 28, 97112.Google Scholar
Coutanceau, M. 1968 Mouvement d'une sphère dans l'axe d'un cylindre contenant un liquide visqueux. J. Mec. 7 (1), 4967.Google Scholar
Coutanceau, M. 1971 Contribution à l’étude théorique et expérimentale de l’écoulement autour d'une sphère qui se déplace dans l'axe d'un cylindre à faible nombre de Reynolds ou en régime irrotationnel. Thèse de Doctorat d'Etat, Poitiers.
Coutanceau, M. & Bouard, R. 1977 Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part I. Steady flow. J. Fluid Mech. 79, 231256.Google Scholar
Coutanceau, M. & Thizon, P. 1978a Sur la détermination expérimentale des effets de paroi sur le comportement d'une bulle d'air en ascension dans un fluide visqueux. C.r. Acad. Sci. Paris B 287, 9396.Google Scholar
Coutanceau, M. & Thizon, P. 1978b Sur le calcul de l’écoulement engendré par la translation uniforrme d'une goutte sphérique ou cylindrique suivant l'axe d'un tube vertical. C.r. Acad. Sci. Paris B 286, 219222.Google Scholar
Coutanceau, M. & Dominguez, H. 1979 Sur la détermination de l'influence d'un support sur l’écoulement autour d'un obstacle de révolution. (To appear.)
Davies, R. M. & Taylor, G. I. 1950 The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. Roy. Soc. A 200, 375390.Google Scholar
Dumitrescu, D. T. 1943 Strömung an einer Luftblase im senkrechten Rohr. Z. angew. Math. Mech. 23, 139149.Google Scholar
Gal-or, B., Klinzing, G. E. & Tavlarides, L. L. 1969 Bubble and drop phenomena. Ind. Eng. Chem. 61 (2), 2134.Google Scholar
Goldsmith, H. L. & Mason, S. G. 1962 The movement of single large bubbles in closed vertical tubes. J. Fluid Mech. 14, 4258.Google Scholar
Goldsmith, H. L. & Mason, S. G. 1963 The flow of suspensions through tubes-II. Single large bubbles. J. Colloid Sci. 18, 237261.Google Scholar
Grace, J. R. 1973 Shapes and velocities of bubbles rising in infinite liquids. Trans. Inst. Chem. Eng. 51, 116120.Google Scholar
Grace, J. R., Wairegi, T. & Nguyen, T. H. 1976 Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Trans. Inst. Chem. Eng. 54, 167173.Google Scholar
Haberman, W. L. & Sayre, R. M. 1958 Motion of rigid and fluid spheres in stationary and moving liquids inside cylindrical tubes. David Taylor Model Basin Rep. 1143.
Hadamard, J. 1911 Mouvement permanent lent d'une sphère liquide et visqueuse dans un liquide visqueux. C.r. Acad. Sci. Paris 152, 17351738.Google Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.
Harper, J. F. 1972 The motion of bubbles and drops through liquids. Adv. Appl. Mech. 12, 59130.Google Scholar
Hetsroni, G., Haber, S. & Wacholder, E. 1970 The flow fields in and around a droplet moving axially within a tube. J. Fluid Mech. 41, 689705.Google Scholar
Ho, B. P. & Leal, L. G. 1975 The creeping motion of liquid drops through a circular tube of comparable diameter. J. Fluid Mech. 71, 361383.Google Scholar
Nicklin, D. J., Wilkes, J. O. & Davidson, J. F. 1962 Two phase flow in vertical tubes. Trans. Inst. Chem. Eng. 40, 6168.Google Scholar
Rybczyśki, W. 1911 Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium. Bull. Acad. Sci. Cracovie A 4046.Google Scholar
Sampson, R. A. 1891 On Stokes’ current function. Phil. Trans. Roy. Soc. A 182, 449518.Google Scholar
Satapathy, R. & Smith, W. 1961 The motion of single immiscible drops through a liquid. J. Fluid Mech. 10, 561570.Google Scholar
Thizon, P. 1977 Contribution à l’étude théorique et expérimentale des effets de parois sur le comportement de bulles en ascension dans un fluide visqueux. Thèse de Doctorat de troisième cycle, Poitiers.
Tung, K. W. & Parlange, J. Y. 1976 Note on the motion of long bubbles in closed tubes. Influence of surface tension. Acta Mech. 24, 313317.Google Scholar
Uno, S. & Kintner, R. C. 1956 Effect of wall proximity on the rate of rise of single air bubbles in a quiescent liquid. A.I.Ch.E. J. 2, 420425.Google Scholar
Van Wijngaarden, L. & Vossers, G. 1978 Mechanics and physics of gas bubbles in liquids: a report on Euromech 98. J. Fluid Mech. 87, 695704.Google Scholar
Wallis, G. B. 1974 The terminal speed of single drops or bubbles in an infinite medium. Int. J. Multiphase Flow 1, 491511.Google Scholar
White, E. T. & Beardmore, R. H. 1962 The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes. Chem. Eng. Sci. 17, 351361.Google Scholar
Zukoski, E. E. 1966 Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes. J. Fluid Mech. 25, 821837.Google Scholar