Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T06:23:48.924Z Has data issue: false hasContentIssue false

Vortex-driven acoustically coupled combustion instabilities

Published online by Cambridge University Press:  21 April 2006

Thierry J. Poinsot
Affiliation:
Laboratoire E.M2.C, CNRS et Ecole Centrale des Arts et Manufactures, Chatenay-Malabry, France
Arnaud C. Trouve
Affiliation:
Laboratoire E.M2.C, CNRS et Ecole Centrale des Arts et Manufactures, Chatenay-Malabry, France
Denis P. Veynante
Affiliation:
Laboratoire E.M2.C, CNRS et Ecole Centrale des Arts et Manufactures, Chatenay-Malabry, France
Sebastien M. Candel
Affiliation:
Laboratoire E.M2.C, CNRS et Ecole Centrale des Arts et Manufactures, Chatenay-Malabry, France
Emile J. Esposito
Affiliation:
Laboratoire E.M2.C, CNRS et Ecole Centrale des Arts et Manufactures, Chatenay-Malabry, France

Abstract

Combustion instability is investigated in the case of a multiple inlet combustor with dump. It is shown that low-frequency instabilities are acoustically coupled and occur at the eigenfrequencies of the system. Using spark-schlieren and a special phase-average imaging of the C2-radical emission, the fluid-mechanical processes involved in a vortex-driven mode of instability are investigated. The phase-average images provide maps of the local non-steady heat release. From the data collected on the combustor the processes of vortex shedding, growth, interactions and burning are described. The phases between the pressure, velocity and heat-release fluctuations are determined. The implications of the global Rayleigh criterion are verified and a mechanism for low-frequency vortex-driven instabilities is proposed.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrere, M. & Williams, F. A. 1968 Comparison of combustion instabilities found in various types of combustion chambers. Twelfth Symp. (Intl) on Combustion, p. 169. The Combustion Institute, Pittsburgh.
Blackshear, P. L. 1958 Growth of disturbances in a flame generated shear region. NACA Rep. 1360.Google Scholar
Bray, K. N. C., Campbell, I. G., Lee, O. K. L. & Moss, J. B. 1983 An investigation of reheat buzz instabilities. Aeronautics and Astronautics, AASU Memo 83/2. University of Southampton.
Cattolica, R. S. & Vosen, S. R. 1984 Two-dimensional fluorescence imaging of a flame-vortex interaction. Sandia Rep. Sand 84-8704.Google Scholar
Darabiha, N. 1984 Un modèle de flamme cohérente pour la combustion prémélangée: analyse d'un foyer turbulent à élargissement brusque. Doctoral thesis, Ecole Centrale des rts et Manufactures, Chatenay-Malabry, France.
Darabiha, N., Candel, S. M. & Marble, F. E. 1986 The effect of strain rate on a premixed laminar flame. Combust. Flame 64, 203.Google Scholar
Darabiha, N., Poinsot, T., Candel, S. M. & Esposito, E. 1986 A correlation between flame structures and acoustic instabilities. Presented at the tenth ICODERS, Berkeley 1985. Progress in Astronautics and Aeronautics, AIAA, pp. 283295.
Haarje, D. T. & Reardon, F. M. 1972 Liquid propellant rocket combustion instability. NASA SP 194.Google Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Ann, Rev. Fluid Mech. 16, 365.Google Scholar
Hurle, I. R., Price, R. B., Sugden, T. M. & Thomas, A. 1968 Sound emission from open turbulent premixed flames. Proc. R. Soc. Lond. A 303, 409.Google Scholar
John, R. R. & Summerfield, M. 1957 Effect of turbulence on radiation intensity from propane-air flames. Jet Propulsion 27, 169.Google Scholar
John, R. R., Wilson, E. S. & Summerfield, M. 1955 Studies of the mechanism of flame stabilization by a spectral intensity method. Jet Propulsion 25, 535.Google Scholar
Keller, J. O., Vaneveld, L., Korschelt, D., Hubbard, G. L., Ghoniem, A. F., Daily, J. W. & Oppenheim, A. K. 1981 Mechanism of instabilities in turbulent combustion leading to flashback. AIAA J. 20, 254.Google Scholar
Libby, P. A. & Williams, F. A. 1982 Structure of laminar flamelets in premixed turbulent flames. Combust. Flame 44, 287.Google Scholar
Libby, P. A. & Williams, F. A. 1983 Strained premixed laminar flames under non-adiabatic conditions. Combust. Sci. Technol. 31, 1.Google Scholar
Libby, P. A. & Williams, F. A. 1984 Strained premixed laminar flames with two reaction zones. Combust. Sci. Technol. 37, 221.Google Scholar
Parker, L. J., Sawyer, R. F. & Ganji, A. R. 1979 Measurement of vortex frequencies in a lean, premixed, prevaporized combustor. Combust. Sci. Technol. 20, 235.Google Scholar
Pitz, R. W. & Daily, J. W. 1981 Experimental study of combustion in a turbulent free shear layer formed at a rearward facing step. Nineteenth Aerospace Sciences Meeting, St Louis, Missouri. AIAA. Paper no. 0106.Google Scholar
Putnam, A. A. 1971 Combustion Driven Oscillations in Industry. Elsevier.
Rogers, D. E. & Marble, F. E. 1956 A mechanism for high frequency oscillations in ramjet combustors and afterburners. Jet Propulsion 26, 456.Google Scholar
Smith, D. A. & Zukoski, E. E. 1985 Combustion instability sustained by unsteady vortex combustion. Twenty-first Joint Propulsion Conference, Monterey, California. AIAA/SAE/ASME/ASEE. Paper no. 1248.Google Scholar
Williams, F. A. 1985 Combustion Theory, 2nd edn. Benjamin Cummings.
Yamaguchi, S., Ohiwa, N. & Hasegawa, T. 1985 Structure of blow-off mechanism of rodstabilized premixed flame. Combust. Sci. Technol. 62, 31.Google Scholar